SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gorospe M) "

Sökning: WFRF:(Gorospe M)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Cruz-Gallardo, I., et al. (författare)
  • The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain
  • 2014
  • Ingår i: Rna Biology. - : Informa UK Limited. - 1547-6286 .- 1555-8584. ; 11:6, s. 766-776
  • Tidskriftsartikel (refereegranskat)abstract
    • T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C-and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.
  •  
4.
  • Moskwa, Patryk, et al. (författare)
  • miR-182-Mediated Downregulation of BRCA1 Impacts DNA Repair and Sensitivity to PARP Inhibitors
  • 2011
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 41:2, s. 210-220
  • Tidskriftsartikel (refereegranskat)abstract
    • Expression of BRCA1 is commonly decreased in sporadic breast tumors, and this correlates with poor prognosis of breast cancer patients. Here we show that BRCA1 transcripts are selectively enriched in the Argonaute/miR-182 complex and miR-182 downregulates BRCA1 expression. Antagonizing miR-182 enhances BRCA1 protein levels and protects them from IR-induced cell death, while overexpressing miR-182 reduces BRCA1 protein, impairs homologous recombination-mediated repair, and render cells hypersensitive to IR. The impaired DNA repair phenotype induced by mill 182 overexpression can be fully rescued by overexpressing miR-182-insensitive BRCA1. Consistent with a BRCA1-deficiency phenotype, miR-182-over-expressing breast tumor cells are hypersensitive to inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). Conversely, antagonizing miR-182 enhances BRCA1 levels and induces resistance to PARP1 inhibitor. Finally, a clinical-grade PARP1 inhibitor impacts outgrowth of miR-182-expressing tumors in animal models. Together these results suggest that miR-182-mediated downregulation of BRCA1 impedes DNA repair and may impact breast cancer therapy.
  •  
5.
  • van der Brug, MP, et al. (författare)
  • RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways
  • 2008
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 105:29, s. 10244-10249
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is a major neurodegenerative condition with several rare Mendelian forms. Oxidative stress and mitochondrial function have been implicated in the pathogenesis of PD but the molecular mechanisms involved in the degeneration of neurons remain unclear. DJ-1 mutations are one cause of recessive parkinsonism, but this gene is also reported to be involved in cancer by promoting Ras signaling and suppressing PTEN-induced apoptosis. The specific function of DJ-1 is unknown, although it is responsive to oxidative stress and may play a role in the maintenance of mitochondria. Here, we show, using four independent methods, that DJ-1 associates with RNA targets in cells and the brain, including mitochondrial genes, genes involved in glutathione metabolism, and members of the PTEN/PI3K cascade. Pathogenic recessive mutants are deficient in this activity. We show that DJ-1 is sufficient for RNA binding at nanomolar concentrations. Further, we show that DJ-1 binds RNA but dissociates after oxidative stress. These data implicate a single mechanism for the pleiotropic effects of DJ-1 in different model systems, namely that the protein binds multiple RNA targets in an oxidation-dependent manner.
  •  
6.
  •  
7.
  • Fischer, M Dominik, et al. (författare)
  • Definition of the unique human extraocular muscle allotype by expression profiling.
  • 2005
  • Ingår i: Physiol Genomics. - : American Physiological Society. - 1531-2267. ; 22:3, s. 283-91
  • Tidskriftsartikel (refereegranskat)abstract
    • The extraocular muscles (EOMs) are a unique group of specialized muscles that are anatomically and physiologically distinct from other skeletal muscles. Perhaps the most striking characteristic of the EOMs is their differential sensitivity to disease. EOMs are spared in Duchenne's muscular dystrophy (DMD) despite widespread involvement of other skeletal muscles. Conversely, they are early and prominent targets in myasthenia gravis and mitochondrial myopathies. It is unclear how EOMs achieve such specialization or a differential response to diseases; however, this has been attributed to a unique, group-specific pattern of gene expression or "allotype." To begin to address these issues as well as define the human EOM allotype, we analyzed the human EOM transcriptome using oligonucleotide-based expression profiling. Three hundred thirty-eight genes were found to be differentially expressed in EOM compared with quadriceps femoris limb muscle, using a twofold cutoff. Functional characterization revealed expression patterns corresponding to known metabolic and structural properties of EOMs such as expression of EOM-specific myosin heavy chain (MYH13) and high neural, vascular, and mitochondrial content, suggesting that the profiling was sensitive and specific. Genes related to myogenesis, stem cells, and apoptosis were detected at high levels in normal human EOMs, suggesting that efficient and continuous regeneration and/or myogenesis may be a mechanism by which the EOMs remain clinically and pathologically spared in diseases such as DMD. Taken together, this study provides insight into how human EOMs achieve their unique structural, metabolic, and pathophysiological properties.
  •  
8.
  • Fischer, M Dominik, et al. (författare)
  • Expression profiling reveals metabolic and structural components of extraocular muscles
  • 2002
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 9:2, s. 71-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The extraocular muscles (EOM) are anatomically and physiologically distinct from other skeletal muscles. EOM are preferentially affected in mitochondrial myopathies, but spared in Duchenne's muscular dystrophy. The anatomical and pathophysiological properties of EOM have been attributed to their unique molecular makeup: an allotype. We used expression profiling to define molecular features of the EOM allotype. We found 346 differentially expressed genes in rat EOM compared with tibialis anterior, based on a twofold difference cutoff. Genes required for efficient, fatigue-resistant, oxidative metabolism were increased in EOM, whereas genes for glycogen metabolism were decreased. EOM also showed increased expression of genes related to structural components of EOM such as vessels, nerves, mitochondria, and neuromuscular junctions. Additionally, genes related to specialized functional roles of EOM such as the embryonic and EOM-specific myosin heavy chains and genes for muscle growth, development, and/or regeneration were increased. The EOM expression profile was validated using biochemical, structural, and molecular methods. Characterization of the EOM expression profile begins to define gene transcription patterns associated with the unique anatomical, metabolic, and pathophysiological properties of EOM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy