SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gosalawit Utke Rapee) "

Sökning: WFRF:(Gosalawit Utke Rapee)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gosalawit-Utke, Rapee, et al. (författare)
  • Ca(BH4)(2)-MgF2 Reversible Hydrogen Storage: Reaction Mechanisms and Kinetic Properties
  • 2011
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:9, s. 3762-3768
  • Tidskriftsartikel (refereegranskat)abstract
    • A composite of Ca(BH4)(2)-MgF2 is proposed as a reversible hydrogen storage system. The dehydrogenation and rehydrogenation reaction mechanisms are investigated by in situ time-resolved synchrotron radiation powder X-ray diffraction (SR-PXD) and Raman spectroscopy. The formation of an intermediate phase (CaF2-xHx) is observed during rehydrogenation. The hydrogen content of 4.3 wt % is obtained within 4 h during the first dehydrogenation at isothermal and isobaric conditions of 330 degrees C and 0.5 bar H-2, respectively. The cycling efficiency is evaluated by three release and uptake cycles together with absorbed hydrogen content in the range 5.1-5.8 wt % after 2.5 h (T = 330 degrees C and p(H-2) = 130 bar). The kinetic properties on the basis of hydrogen absorption are comparable for all cycles. As compared to pure Ca(BH4)(2) and Ca(BH4)(2)-MgH2 composite, Ca(BH4)(2)-MgF2 composite reveals the kinetic destabilization and the reproducibility of hydrogen storage capacities during cycling, respectively.
  •  
2.
  • Gosalawit-Utke, Rapee, et al. (författare)
  • Nanoconfined 2LiBH(4)-MgH2 Prepared by Direct Melt Infiltration into Nanoporous Materials
  • 2011
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:21, s. 10903-10910
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoconfined 2LiBH(4)-MgH2 is prepared by direct melt infiltration of bulk 2LiBH(4)-MgH2 into an inert nanoporous resorcinol-formaldehyde carbon aerogel scaffold material. Scanning electron microscopy (SEM) micrographs and energy dispersive X-ray spectroscopy (EDS) mapping reveal homogeneous dispersion of Mg (from MgH2) and B (from LiBH4) inside the carbon aerogel scaffold. Moreover, nanoconfinement of LiBH4 in the carbon aerogel scaffold is confirmed by differential scanning calorimetry (DSC). The hydrogen desorption kinetics of the nanoconfined 2LiBH(4)-MgH2 is significantly improved as compared to bulk 2LiBH(4)-MgH2. For instance, the nanoconfined 2LiBH(4)-MgH2 releases 90% of the total hydrogen storage capacity within 90 mm, whereas the bulk material releases only 34% (at T = 425 degrees C and p(H-2) = 3.4 bar). A reversible gravimetric hydrogen storage capacity of 10.8 wt % H-2, calculated with respect to the metal hydride content, is preserved over four hydrogen release and uptake cycles.
  •  
3.
  • Puszkiel, Julian, et al. (författare)
  • Hydrogen storage in Mg-LiBH4 composites catalyzed by FeF3
  • 2014
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 1873-2755 .- 0378-7753. ; 267, s. 799-811
  • Tidskriftsartikel (refereegranskat)abstract
    • Mg-10 mol% LiBH4 composite plus small amounts of FeF3 is investigated in the present work. The presence of LiBH4 during the milling process noticeably modifies the size and morphology of the Mg agglomerates, leading to faster hydrogenation and reaching almost the theoretical hydrogen capacity owing to enhanced hydrogen diffusion mechanism. However, the dehydrogenation of the system at low temperatures (<= 300 degrees C) is still slow. Thus, FeF3 addition is proposed to improve the dehydrogenation kinetic behavior. From experimental results, it is found that the presence of FeF3 results in an additional size reduction of the Mg agglomerates between similar to 10 and similar to 100 mu m and the formation of stable phases such as MgF2, LiF and FeB. The FeB species might have a catalytic effect upon the MgH2 decomposition. As a further result of the FeF3 addition, the Mg-10 mol%LiBH4-5 mol% FeF3 material shows improved dehydrogenation properties: reduced dehydrogenation activation energy, faster hydrogen desorption rate and reversible hydrogen capacities of about 5 wt% at 275 degrees C. (C) 2014 Elsevier B.V. All rights reserved.
  •  
4.
  • Puszkiel, Julian, et al. (författare)
  • Sorption behavior of the MgH2-Mg2FeH6 hydride storage system synthesized by mechanical milling followed by sintering
  • 2013
  • Ingår i: International Journal of Hydrogen Energy. - : Elsevier BV. - 1879-3487 .- 0360-3199. ; 38:34, s. 14618-14630
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrogen sorption behavior of the Mg2FeH6-MgH2 hydride system is investigated via in-situ synchrotron and laboratory powder X-ray diffraction (SR-PXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD) and volumetric techniques. The Mg2FeH6-MgH2 hydride system is obtained by mechanical milling in argon atmosphere followed by sintering at high temperature and hydrogen pressure. In-situ SR-PXD results show that upon hydriding MgH2 is a precursor for Mg2FeH6 formation and remained as hydrided phase in the obtained material. Diffusion constraints preclude the further formation of Mg2FeH6. Upon dehydriding, our results suggest that MgH2 and Mg2FeH6 decompose independently in a narrow temperature range between 275 and 300 degrees C. Moreover, the decomposition behavior of both hydrides in the Mg2FeH6-MgH2 hydride mixture is influenced by each other via dual synergetic-destabilizing effects. The final hydriding/dehydriding products and therefore the kinetic behavior of the Mg2FeH6-MgH2 hydride system exhibits a strong dependence on the temperature and pressure conditions. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
  •  
5.
  • Saldan, Ivan, et al. (författare)
  • Hydrogen Sorption in the LiH-LiF-MgB2 System
  • 2013
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:33, s. 17360-17366
  • Tidskriftsartikel (refereegranskat)abstract
    • A composite material in the LiH-LiF-MgB2 system has been synthesized by high-energy ball milling. Some peaks in addition to that of the binary 2LiH-MgB2 and 2LiF-MgB2 systems are observed for the composite material by high-pressure differential scanning calorimetry (HP-DSC), indicating the formation of intermediate phases. In situ synchrotron radiation powder X-ray diffraction (SR-PXD) performed at 60 bar of H-2 and 390 degrees C shows a superposition of both reaction pathways that are typical for 2LiH-MgB2 and 2LiF-MgB2. After hydrogen absorption of the LiH-LiF-MgB2 composite the vibrational modes of LiBH4 were observed by attenuated total reflection infrared (ATR-IR) spectroscopy. The F-19 MAS NMR spectrum of the LiF-LiBH4 sample after heat treatment in hydrogen is strongly dominated by the centerband and spinning sidebands from LiF; in addition, a low-intensity resonance, very similar to that of [BF4](-) ion, is identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy