SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Granskog Viktor) "

Sökning: WFRF:(Granskog Viktor)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Arseneault, Mathieu, et al. (författare)
  • The Dawn of Thiol-Yne Triazine Triones Thermosets as a New Material Platform Suited for Hard Tissue Repair
  • 2018
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 30:52
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of a unique set of advanced materials that can bear extraordinary loads for use in bone and tooth repair will inevitably unlock unlimited opportunities for clinical use. Herein, the design of high-performance thermosets is reported based on triazine-trione (TATO) monomers using light-initiated thiol-yne coupling (TYC) chemistry as a polymerization strategy. In comparison to traditional thiol-ene coupling (TEC) systems, TYC chemistry has yielded highly dense networks with unprecedented mechanical properties. The most promising system notes 4.6 GPa in flexural modulus and 160 MPa in flexural strength, an increase of 84% in modulus and 191% in strength when compared to the corresponding TATO system based on TEC chemistry. Remarkably, the mechanical properties exceed those of polylactide (PLA) and challenge poly(ether ether ketone) PEEK and today's methacrylate-based dental resin composites. All the materials display excellent biocompatibility, in vitro, and are successfully: i) molded into medical devices for fracture repair, and ii) used as bone adhesive for fracture fixation and as tooth fillers with the outstanding bond strength that outperform methacrylate systems used today in dental restoration application. Collectively, a new era of advanced TYC materials is unfolded that can fulfill the preconditions as bone fixating implants and for tooth restorations.
  •  
3.
  •  
4.
  •  
5.
  • Granskog, Viktor, et al. (författare)
  • High-Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair
  • 2018
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 28:26
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self-etch primers. Validation of the adhesive strength is conducted on wet bone substrates and accomplished via fiber-reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bond strength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K-wires and match metal plates and screw implants.
  •  
6.
  • Granskog, Viktor, et al. (författare)
  • Linear Dendritic Block Copolymers as Promising Biomaterials for the Manufacturing of Soft Tissue Adhesive Patches Using Visible Light Initiated Thiol-Ene Coupling Chemistry
  • 2015
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 25:42, s. 6596-6605
  • Tidskriftsartikel (refereegranskat)abstract
    • A library of dendritic-linear-dendritic (DLD) materials comprising linear poly(ethylene glycol) and hyperbranched dendritic blocks based on 2,2-bis(hydroxymethyl) propionic acid is successfully synthesized and post-functionalized with peripheral allyl groups. Reactive DLDs with pseudo-generations of 3 to 6 (G3-G6) are isolated in large scale allowing their thorough evaluation as important components for the development of biomedical adhesives. Due to their branched nature and inherent degradable ester-bonds, promising biomaterial resins are accomplished with suitable viscosity, eliminating the excessive use of co-solvents. By utilizing benign high-energy visible light initiated thiol-ene coupling chemistry, DLDs together with tris[2-(3-mercaptopropionyloxy) ethyl] isocyanurate and surgical mesh enable the fabrication of soft tissue adhesive patches (STAPs) within a total irradiation time of 30 s. The STAPs display the ability to create good adhesion to wet soft tissue and encouraging results in cytotoxicity tests. All crosslinked materials are also found to degrade after being stored in human blood plasma and phosphate buffered saline. The proposed benign methodology coupled with the promising features of the crosslinked materials is herein envisioned as a soft tissue adhesive with properties that do not exist in currently available tissue adhesives.
  •  
7.
  • Granskog, Viktor (författare)
  • Thiol-Ene/Yne Adhesives for Tissue Fixation
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The utilization of adhesives in surgery has not reached its full potential and research in the field is encouraged by the surgeons’ desire for improved alternatives to today’s tissue fixation strategies. Here, adhesive resins based on thiol-ene coupling (TEC) chemistry or thiol-yne coupling (TYC) chemistry are exploited to develop tissue adhesives that cure fast and on-demand via photoinitiation. In order to make safer adhesives, macromolecular components and systems with high conversion of functional groups were developed to minimize leakage of unreacted monomers.To develop macromolecular resin components, allyl-functional dendritic-linear-dendritic (DLD) co-polymers were synthesized with a poly(ethylene glycol) (PEG) core chain and hyperbranched structures of 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) to capitalize on the rheological properties of dendritic structures. The dendritic structures interfered with the crystallization of the PEG segment and the DLD’s liquid appearance enabled their use as macromolecular components without solvent. The DLDs were cured with a thiol crosslinker and the strategy disclosed degradable soft tissue adhesives with good adhesion to wet porcine skin.Mussel inspired dopamine derivatives was evaluated as adhesion-enhancing primers for bone adhesives. The addition of NaOH to the primer solutions increased the shear bond strengths of the adhesive to bone. The highest bond strengths with the tested dopamine derivatives were obtained when a combination of thiol and ene-functional derivatives were used.With inspiration from dental resin adhesives, a fully TEC based adhesive system was developed with excellent shear bond strength to wet bone substrates. The adhesive system enabled superior fixation of phalangeal fracture models compared to the daily used Kirschner wires and could even compete with a screw fixated metal plate. The adhesive materials proved biocompatible in initial in vitro and in vivo studies.Strong and rigid materials for fracture fixation were developed via a strategy of using highly crosslinked triazine-trione monomers and TEC or TYC chemistry. The development resulted in TYC resin based materials with mechanical properties that very well can compete with poly(ether ether ketone) (PEEK) that is used in biomedical load bearing applications due to its high strength, toughness and inertness.
  •  
8.
  •  
9.
  • Hutchinson, Daniel, et al. (författare)
  • Highly Customizable Bone Fracture Fixation through the Marriage of Composites and Screws
  • 2021
  • Ingår i: Advanced Functional Materials. - : John Wiley and Sons Inc. - 1616-301X .- 1616-3028. ; 31:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Open reduction internal fixation (ORIF) metal plates provide exceptional support for unstable bone fractures; however, they often result in debilitating soft-tissue adhesions and their rigid shape cannot be easily customized by surgeons. In this work, a surgically feasible ORIF methodology, called AdhFix, is developed by combining screws with polymer/hydroxyapatite composites, which are applied and shaped in situ before being rapidly cured on demand via high-energy visible-light-induced thiol–ene coupling chemistry. The method is developed on porcine metacarpals with transverse and multifragmented fractures, resulting in strong and stable fixations with a bending rigidity of 0.28 (0.03) N m2 and a maximum load before break of 220 (15) N. Evaluations on human cadaver hands with proximal phalanx fractures show that AdhFix withstands the forces from finger flexing exercises, while short- and long-term in vivo rat femur fracture models show that AdhFix successfully supports bone healing without degradation, adverse effects, or soft-tissue adhesions. This procedure represents a radical new approach to fracture fixation, which grants surgeons unparalleled customizability and does not result in soft-tissue adhesions. © 2021 The Authors.
  •  
10.
  • Olofsson, Kristina, et al. (författare)
  • Activated dopamine derivatives as primers for adhesive-patch fixation of bone fractures
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 6:31, s. 26398-26405
  • Tidskriftsartikel (refereegranskat)abstract
    • For the stabilization of complex bone fractures, tissue adhesives are an attractive alternative to conventional implants, often consisting of metal plates and screws whose fixation may impose additional trauma on the already fractured bone. This study reports on the synthesis and evaluation of activated dopamine derivatives as primers for fiber-reinforced-adhesive patches in bone-fracture stabilization strategies. The performance of synthesized dopamine derivatives are evaluated with regard to the adhesive shear strength of formed bone patches, as well as cell viability and surface properties. Dopamine-derived primers with methacrylamide, allyl, and thiol functional groups were found to significantly increase the adhesive shear strength of adhesive patches. Furthermore, deprotonation of the primer solution was determined to be essential in order to achieve good adhesion. In conclusion, the primer solutions that were found to give the best adhesion were the once where dopa-thiol was used in combination with either dopamethacrylamide or dopa-allyl, resulting in shear bond strengths of 0.29 MPa.
  •  
11.
  •  
12.
  • von Kieseritzky, J., et al. (författare)
  • DendroPrime as an adhesion barrier on fracture fixation plates: an experimental study in rabbits
  • 2020
  • Ingår i: Journal of Hand Surgery-European Volume. - : SAGE Publications. - 1753-1934 .- 2043-6289. ; 45:7, s. 742-747
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested the anti-adhesional effect of a new thiol-ene-based coating in a rabbit model. In 12 New Zealand white rabbits, the periosteum and cortex of the proximal phalanx of the second toe of both hind paws was scratched. Stainless steel plates were fixated with screws. One plate was coated with DendroPrime and the other left bare. The non-operated second toes of both hind paws of an additional four rabbits served as controls. Seven weeks after surgery, the soft tissue adhesion to the plates was evaluated macroscopically, and joint mobility was measured biomechanically. Toe joint mobility was about 20% greater and statistically significant in specimens with coated plates compared with the bare plates. Soft tissue overgrowth and, in some cases, synovitis or adhesions between the plate and the tendon were observed on all bare plates but not on any of the coated plates. We conclude that the thiol-ene-based coating can improve joint mobility by about 20%. This material has a potential to reduce adhesion around plates in fracture surgery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy