SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grevesse N.) "

Sökning: WFRF:(Grevesse N.)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amarsi, A. M., et al. (författare)
  • 3D non-LTE line formation of neutral carbon in the Sun
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon abundances in late-type stars are important in a variety of astrophysical contexts. However C I lines, one of the main abundance diagnostics, are sensitive to departures from local thermodynamic equilibrium (LTE). We present a model atom for non-LTE analyses of C I lines, that uses a new, physically-motivated recipe for the rates of neutral hydrogen impact excitation. We analyse C I lines in the solar spectrum, employing a three-dimensional (3D) hydrodynamic model solar atmosphere and 3D non-LTE radiative transfer. We find negative non-LTE abundance corrections for C I lines in the solar photosphere, in accordance with previous studies, reaching up to around 0.1 dex in the disk-integrated flux. We also present the first fully consistent 3D non-LTE solar carbon abundance determination: we infer log is an element of(C) = 8.44 ± 0.02, in good agreement with the current standard value. Our models reproduce the observed solar centre-to-limb variations of various C I lines, without any adjustments to the rates of neutral hydrogen impact excitation, suggesting that the proposed recipe may be a solution to the long-standing problem of how to reliably model inelastic collisions with neutral hydrogen in late-type stellar atmospheres.
  •  
2.
  • Amarsi, Anish M., et al. (författare)
  • The solar carbon, nitrogen, and oxygen abundances from a 3D LTE analysis of molecular lines
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon, nitrogen, and oxygen are the fourth, sixth, and third most abundant elements in the Sun. Their abundances remain hotly debated due to the so-called solar modelling problem that has persisted for almost 20 years. We revisit this issue by presenting a homogeneous analysis of 408 molecular lines across 12 diagnostic groups, observed in the solar intensity spectrum. Using a realistic 3D radiative-hydrodynamic model solar photosphere and local thermodynamic equilibrium (LTE) line formation, we find log ϵC = 8.47  ±  0.02, log ϵN = 7.89  ±  0.04, and log ϵO = 8.70  ±  0.04. The stipulated uncertainties mainly reflect the sensitivity of the results to the model atmosphere; this sensitivity is correlated between the different diagnostic groups, which all agree with the mean result to within 0.03 dex. For carbon and oxygen, the molecular results are in excellent agreement with our 3D non-LTE analyses of atomic lines. For nitrogen, however, the molecular indicators give a 0.12 dex larger abundance than the atomic indicators, and our best estimate of the solar nitrogen abundance is given by the mean: 7.83 dex. The solar oxygen abundance advocated here is close to our earlier determination of 8.69 dex, and so the present results do not significantly alleviate the solar modelling problem.
  •  
3.
  • Amarsi, Anish, et al. (författare)
  • The 3D non-LTE solar nitrogen abundance from atomic lines
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen is an important element in various fields of stellar and Galactic astronomy, and the solar nitrogen abundance is crucial as a yardstick for comparing different objects in the cosmos. In order to obtain a precise and accurate value for this abundance, we carried out NI line formation calculations in a 3D radiative-hydrodynamicSTAGGER model solar atmosphere in full 3D non-local thermodynamic equilibrium (non-LTE). We used a model atom that includes physically motivated descriptions for the inelastic collisions of NI with free electrons and with neutral hydrogen. We selected five NI lines of high excitation energy to study in detail, based on their strengths and on their being relatively free of blends. We found that these lines are slightly strengthened from non-LTE photon losses and from 3D granulation effects, resulting in negative abundance corrections of around - 0.01 dex and - 0.04 dex, respectively. Our advocated solar nitrogen abundance is log (N) = 7.77, with the systematic 1 sigma uncertainty estimated to be 0.05 dex. This result is consistent with earlier studies after correcting for differences in line selections and equivalent widths.
  •  
4.
  • Asplund, M., et al. (författare)
  • The chemical make-up of the Sun : A 2020 vision
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The chemical composition of the Sun is a fundamental yardstick in astronomy, relative to which essentially all cosmic objects are referenced. As such, having accurate knowledge of the solar elemental abundances is crucial for an extremely broad range of topics.Aims: We reassess the solar abundances of all 83 long-lived elements, using highly realistic solar modelling and state-of-the-art spectroscopic analysis techniques coupled with the best available atomic data and observations.Methods: The basis for our solar spectroscopic analysis is a three-dimensional (3D) radiative-hydrodynamical model of the solar surface convection and atmosphere, which reproduces the full arsenal of key observational diagnostics. New complete and comprehensive 3D spectral line formation calculations taking into account of departures from local thermodynamic equilibrium (non-LTE) are presented for Na, Mg, K, Ca, and Fe using comprehensive model atoms with reliable radiative and collisional data. Our newly derived abundances for C, N, and O are based on a 3D non-LTE analysis of permitted and forbidden atomic lines as well as 3D LTE calculations for a total of 879 molecular transitions of CH, C-2, CO, NH, CN, and OH. Previous 3D-based calculations for another 50 elements are re-evaluated based on updated atomic data, a stringent selection of lines, improved consideration of blends, and new non-LTE calculations available in the literature. For elements where spectroscopic determinations of the quiet Sun are not possible, the recommended solar abundances are revisited based on complementary methods, including helioseismology (He), solar wind data from the Genesis sample return mission (noble gases), sunspot observations (four elements), and measurements of the most primitive meteorites (15 elements).Results: Our new improved analysis confirms the relatively low solar abundances of C, N, and O obtained in our previous 3D-based studies: log epsilon(C) = 8.46 +/- 0.04, log epsilon(N) = 7.83 +/- 0.07, and log epsilon(O) = 8.69 +/- 0.04. Excellent agreement between all available atomic and molecular indicators is achieved for C and O, but for N the atomic lines imply a lower abundance than for the molecular transitions for unknown reasons. The revised solar abundances for the other elements also typically agree well with our previously recommended values, with only Li, F, Ne, Mg, Cl, Kr, Rb, Rh, Ba, W, Ir, and Pb differing by more than 0.05 dex. The here-advocated present-day photospheric metal mass fraction is only slightly higher than our previous value, mainly due to the revised Ne abundance from Genesis solar wind measurements: X-surface = 0.7438 +/- 0.0054, Y-surface = 0.2423 +/- 0.0054, Z(surface) = 0.0139 +/- 0.0006, and Z(surface)/X-surface = 0.0187 +/- 0.0009. Overall, the solar abundances agree well with those of CI chondritic meteorites, but we identify a correlation with condensation temperature such that moderately volatile elements are enhanced by approximate to 0.04 dex in the CI chondrites and refractory elements possibly depleted by approximate to 0.02 dex, conflicting with conventional wisdom of the past half-century. Instead, the solar chemical composition more closely resembles that of the fine-grained matrix of CM chondrites with the expected exception of the highly volatile elements.Conclusions: Updated present-day solar photospheric and proto-solar abundances are presented for 83 elements, including for all long-lived isotopes. The so-called solar modelling problem - a persistent discrepancy between helioseismology and solar interior models constructed with a low solar metallicity similar to that advocated here - remains intact with our revised solar abundances, suggesting shortcomings with the computed opacities and/or treatment of mixing below the convection zone in existing standard solar models. The uncovered trend between the solar and CI chondritic abundances with condensation temperature is not yet understood but is likely imprinted by planet formation, especially since a similar trend of opposite sign is observed between the Sun and solar twins.
  •  
5.
  • Buldgen, G., et al. (författare)
  • Helioseismic determination of the solar metal mass fraction
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The metal mass fraction of the Sun Z is a key constraint in solar modelling, but its value is still under debate. The standard solar chemical composition of the late 2000s has the ratio of metals to hydrogen as Z/X = 0.0181, and there was a small increase to 0.0187 in 2021, as inferred from 3D non-LTE spectroscopy. However, more recent work on a horizontally and temporally averaged ⟨3D⟩ model claim Z/X = 0.0225, which is consistent with the high values based on 1D LTE spectroscopy from 25 years ago.Aims. We aim to determine a precise and robust value of the solar metal mass fraction from helioseismic inversions, thus providing independent constraints from spectroscopic methods.Methods. We devised a detailed seismic reconstruction technique of the solar envelope, combining multiple inversions and equations of state in order to accurately and precisely determine the metal mass fraction value.Results. We show that a low value of the solar metal mass fraction corresponding to Z/X = 0.0187 is favoured by helioseismic constraints and that a higher metal mass fraction corresponding to Z/X = 0.0225 is strongly rejected by helioseismic data.Conclusions. We conclude that direct measurement of the metal mass fraction in the solar envelope favours a low metallicity, in line with the 3D non-LTE spectroscopic determination of 2021. A high metal mass fraction, as measured using a ⟨3D⟩ model in 2022, is disfavoured by helioseismology for all modern equations of state used to model the solar convective envelope.
  •  
6.
  • Buldgen, G., et al. (författare)
  • Higher metal abundances do not solve the solar problem
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Sun acts as a cornerstone of stellar physics. Thanks to spectroscopic, helioseismic and neutrino flux observations, we can use the Sun as a laboratory of fundamental physics in extreme conditions. The conclusions we draw are then used to inform and calibrate evolutionary models of all other stars in the Universe. However, solar models are in tension with helioseismic constraints. The debate on the 'solar problem' has hitherto led to numerous publications discussing potential issues with solar models and abundances.Aims. Using the recently suggested high-metallicity abundances for the Sun, we compute standard solar models as well as models with macroscopic transport that reproduce the solar surface lithium abundances, and we analyze their properties in terms of helioseismic and neutrino flux observations.Methods. We compute solar evolutionary models and combine spectroscopic and helioseismic constraints as well as neutrino fluxes to investigate the impact of macroscopic transport on these measurements.Results. When high-metallicity solar models are calibrated to reproduce the measured solar lithium depletion, tensions arise with respect to helioseismology and neutrino fluxes. This is yet another demonstration that the solar problem is also linked to the physical prescriptions of solar evolutionary models and not to chemical composition alone.Conclusions. A revision of the physical ingredients of solar models is needed in order to improve our understanding of stellar structure and evolution. The solar problem is not limited to the photospheric abundances if the depletion of light elements is considered. In addition, tighter constraints on the solar beryllium abundance will play a key role improving of solar models.
  •  
7.
  • Buldgen, G., et al. (författare)
  • In-depth analysis of solar models with high-metallicity abundances and updated opacity tables
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. As a result of the high-quality constraints available for the Sun, we are able to carry out detailed combined analyses using neutrino, spectroscopic, and helioseismic observations. These studies lay the ground for future improvements of the key physical components of solar and stellar models because ingredients such as the equation of state, the radiative opacities, or the prescriptions for macroscopic transport processes of chemicals are then used to study other stars in the Universe.Aims. We study the existing degeneracies in solar models using the recent high-metallicity spectroscopic abundances by comparing them to helioseismic and neutrino data and discuss the effect on their properties of changes in the micro and macro physical ingredients.Methods. We carried out a detailed study of solar models computed with a high-metallicity composition from the literature based on averaged 3D models that were claimed to resolve the solar modelling problem. We compared these models to helioseismic and neutrino constraints.Results. The properties of the solar models are significantly affected by the use of the recent OPLIB opacity tables and the inclusion of macroscopic transport. The properties of the standard solar models computed using the OPAL opacities are similar to those for which the OP opacities were used. We show that a modification of the temperature gradient just below the base of the convective zone is required to remove the discrepancies in solar models, particularly in the presence of macroscopic mixing. This can be simulated by a localised increase in the opacity of a few percent.Conclusions. We conclude that the existing degeneracies and issues in solar modelling are not removed by using an increase in the solar metallicity, in contradiction to what has been suggested in the recent literature. Therefore, standard solar models cannot be used as an argument for a high-metallicity composition. While further work is required to improve solar models, we note that direct helioseismic inversions indicate a low metallicity in the convective envelope, in agreement with spectroscopic analyses based on full 3D models.
  •  
8.
  •  
9.
  • Grevesse, N., et al. (författare)
  • The chemical composition of the sun
  • 2011
  • Ingår i: Canadian journal of physics (Print). - 0008-4204 .- 1208-6045. ; 89:4, s. 327-331
  • Forskningsöversikt (refereegranskat)abstract
    • We have very recently re-determined the abundances of nearly all the available chemical elements in the solar photosphere, from lithium to thorium (Asplund et al. Annu. Rev. Astron. Astrophys. 47, 481 (2009)). This new complete and homogeneous analysis results from a very careful selection of spectral lines of all the indicators of the abundances present in the solar photospheric spectrum, from a discussion of the atomic and molecular data, and from an analysis of these lines based on a new 3D model of the solar outer layers, taking non-LTE effects into account when possible. We present these new results, compare them with other recent solar data as well as with recent results for the solar neighborhood, and discuss some of their most important implications as well as some of the atomic data we still urgently need.
  •  
10.
  • Grevesse, N., et al. (författare)
  • The chemical composition of the Sun
  • 2010
  • Ingår i: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 0004-640X .- 1572-946X. ; 328:02-jan, s. 179-183
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a redetermination of the solar abundances of all available elements. The new results have very recently been published by Asplund et al. (Annu. Rev. Astron. Astrophys. 47:481,2009). The basic ingredients of this work, the main results and some of their implications are summarized hereafter.
  •  
11.
  • Novak, R., et al. (författare)
  • Robotic fluidic coupling and interrogation of multiple vascularized organ chips
  • 2020
  • Ingår i: Nature Biomedical Engineering. - : Nature Research. - 2157-846X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an ‘interrogator’ that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood–brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy