SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grodzinsky Alan J.) "

Search: WFRF:(Grodzinsky Alan J.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Batista, Michael, et al. (author)
  • Effects of Chondroadherin on Cartilage Nanostructure and Biomechanics via Murine Model
  • 2014
  • In: Proceedings of ASME 2013 Summer Bioengineering Conference. - 9780791855607 ; 1A, s. 01-16
  • Conference paper (peer-reviewed)abstract
    • While small leucine rich proteins/proteoglycans (SLRPs) are present in very low concentrations in the extracellular matrix (ECM), they have been shown to be critical determinants of the proper ECM assembly and function in connective tissues [1] including bone [2], cornea [3], and cartilage [4]. However, their direct and indirect roles in matrix biomechanics and the potential for osteoarthritis-related dysfunction of cartilage remain unclear. With the advent of new high resolution nanotechnological tools, the direct quantification of cartilage biomechanical properties using murine models can provide important insights into how secondary ECM molecules, such as SLRPs, affect the function and pathology of cartilage [5]. Previous nanoindentation studies of murine cartilage have assessed the effects of maturation and osteoarthritis-like degradation of cartilage on its biomechanical properties [6, 7]. Recently, murine models have received increased attention because of the availability of specific gene-knockout and gene alteration technologies [8]. For example, chondroadherin (CHAD) is a non-collagenous small leucine-rich proteoglycan (SLRP) with α-helix and β-sheet secondary structure, spatially localized in the territorial matrix (MW = 38 kDa) [9]. In articular cartilage, CHAD is distributed non-uniformly with depth [10], and binds to type II collagen and the α2β1 integrin and is hypothesized to function in the communication between chondrocytes and their surrounding matrix, as well as in the regulation of collagen fibril assembly [11, 12] (Fig. 1). The objective of the present study is to explore the role of CHAD and its depletion on the structure and nanomechanical properties of both superficial and middle/deep zone cartilage. The current methods thereby enabled depth-dependent analysis of cartilage nanostructure and dynamic energy-dissipative mechanisms.
  •  
2.
  • Black, Rebecca Mae, et al. (author)
  • Proteomic analysis reveals dexamethasone rescues matrix breakdown but not anabolic dysregulation in a cartilage injury model
  • 2020
  • In: Osteoarthritis and Cartilage Open. - : Elsevier BV. - 2665-9131. ; 2:4
  • Journal article (peer-reviewed)abstract
    • Objectives: In this exploratory study, we used discovery proteomics to follow the release of proteins from bovine knee articular cartilage in response to mechanical injury and cytokine treatment. We also studied the effect of the glucocorticoid Dexamethasone (Dex) on these responses.Design: Bovine cartilage explants were treated with either cytokines alone (10 ng/ml TNFα, 20 ng/ml IL-6, 100 ng/ml sIL-6R), a single compressive mechanical injury, cytokines and injury, or no treatment, and cultured in serum-free DMEM supplemented with 1% ITS for 22 days. All samples were incubated with or without addition of 100 nM Dex. Mass spectrometry and western blot analyses were performed on medium samples for the identification and quantification of released proteins.Results: We identified 500 unique proteins present in all three biological replicates. Many proteins involved in the catabolic response of cartilage degradation had increased release after inflammatory stress. Dex rescued many of these catabolic effects. The release of some proteins involved in anabolic and chondroprotective processes was inconsistent, indicating differential effects on processes that may protect cartilage from injury. Dex restored only a small fraction of these to the control state, while others had their effects exacerbated by Dex exposure.Conclusions: We identified proteins that were released upon cytokine treatment which could be potential biomarkers of the inflammatory contribution to cartilage degradation. We also demonstrated the imperfect rescue of Dex on the effects of cartilage degradation, with many catabolic factors being reduced, while other anabolic or chondroprotective processes were not.
  •  
3.
  • Black, Rebecca Mae, et al. (author)
  • Proteomic clustering reveals the kinetics of disease biomarkers in bovine and human models of post-traumatic osteoarthritis
  • 2021
  • In: Osteoarthritis and Cartilage Open. - : Elsevier BV. - 2665-9131. ; 3:4
  • Journal article (peer-reviewed)abstract
    • Objectives: In this study, we apply a clustering method to proteomic data sets from bovine and human models of post-traumatic osteoarthritis (PTOA) to distinguish clusters of proteins based on their kinetics of release from cartilage and examined these groups for PTOA biomarker candidates. We then quantified the effects of dexamethasone (Dex) on the kinetics of release of the cartilage media proteome. Design: Mass spectrometry was performed on sample medium collected from two separate experiments using juvenile bovine and human cartilage explants (3 samples/treatment condition) during 20- or 21-day treatment with inflammatory cytokines (TNF-α, IL-6, sIL-6R) with or without a single compressive mechanical injury. All samples were incubated with or without 100 ​nM Dex. Clustering was performed on the correlation between normalized averaged release vectors for each protein. Results: Our proteomic method identified the presence of distinct clusters of proteins based on the kinetics of their release over three weeks of culture. Clusters of proteins with peak release after one to two weeks had biomarker candidates with increased release compared to control. Dex rescued some of the changes in protein release kinetics the level of control, and in all conditions except control, there was late release of immune-related proteins. Conclusions: We demonstrate a clustering method applied to proteomic data sets to identify and validate biomarkers of early PTOA progression and explore the relationships between the release of spatially related matrix components. Dex restored the kinetics of release to many matrix components, but not all factors that contribute to cartilage homeostasis.
  •  
4.
  • Black, Rebecca Mae, et al. (author)
  • Tissue catabolism and donor-specific dexamethasone response in a human osteochondral model of post-traumatic osteoarthritis
  • 2022
  • In: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 24:1
  • Journal article (peer-reviewed)abstract
    • Background: Post-traumatic osteoarthritis (PTOA) does not currently have clinical prognostic biomarkers or disease-modifying drugs, though promising candidates such as dexamethasone (Dex) exist. Many challenges in studying and treating this disease stem from tissue interactions that complicate understanding of drug effects. We present an ex vivo human osteochondral model of PTOA to investigate disease effects on cartilage and bone homeostasis and discover biomarkers for disease progression and drug efficacy. Methods: Human osteochondral explants were harvested from normal (Collins grade 0–1) ankle talocrural joints of human donors (2 female, 5 male, ages 23–70). After pre-equilibration, osteochondral explants were treated with a single-impact mechanical injury and TNF-α, IL-6, and sIL-6R ± 100 nM Dex for 21 days and media collected every 2–3 days. Chondrocyte viability, tissue DNA content, and glycosaminoglycan (sGAG) percent loss to the media were assayed and compared to untreated controls using a linear mixed effects model. Mass spectrometry analysis was performed for both cartilage tissue and pooled culture medium, and the statistical significance of protein abundance changes was determined with the R package limma and empirical Bayes statistics. Partial least squares regression analyses of sGAG loss and Dex attenuation of sGAG loss against proteomic data were performed. Results: Injury and cytokine treatment caused an increase in the release of matrix components, proteases, pro-inflammatory factors, and intracellular proteins, while tissue lost intracellular metabolic proteins, which was mitigated with the addition of Dex. Dex maintained chondrocyte viability and reduced sGAG loss caused by injury and cytokine treatment by 2/3 overall, with donor-specific differences in the sGAG attenuation effect. Biomarkers of bone metabolism had mixed effects, and collagen II synthesis was suppressed with both disease and Dex treatment by 2- to 5-fold. Semitryptic peptides associated with increased sGAG loss were identified. Pro-inflammatory humoral proteins and apolipoproteins were associated with lower Dex responses. Conclusions: Catabolic effects on cartilage tissue caused by injury and cytokine treatment were reduced with the addition of Dex in this osteochondral PTOA model. This study presents potential peptide biomarkers of early PTOA progression and Dex efficacy that can help identify and treat patients at risk of PTOA.
  •  
5.
  • Dwivedi, Garima, et al. (author)
  • Inflammatory cytokines and mechanical injury induce post-traumatic osteoarthritis-like changes in a human cartilage-bone-synovium microphysiological system
  • 2022
  • In: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 24:1
  • Journal article (peer-reviewed)abstract
    • Background: Traumatic knee injuries in humans trigger an immediate increase in synovial fluid levels of inflammatory cytokines that accompany impact damage to joint tissues. We developed a human in vitro cartilage-bone-synovium (CBS) coculture model to study the role of mechanical injury and inflammation in the initiation of post-traumatic osteoarthritis (PTOA)-like disease. Methods: Osteochondral plugs (cartilage-bone, CB) along with joint capsule synovium explants (S) were harvested from 25 cadaveric distal femurs from 16 human donors (Collin’s grade 0–2, 23–83years). Two-week monocultures (cartilage (C), bone (B), synovium (S)) and cocultures (CB, CBS) were established. A PTOA-like disease group was initiated via coculture of synovium explants with mechanically impacted osteochondral plugs (CBS+INJ, peak stress 5MPa) with non-impacted CB as controls. Disease-like progression was assessed through analyses of changes in cell viability, inflammatory cytokines released to media (10-plex ELISA), tissue matrix degradation, and metabolomics profile. Results: Immediate increases in concentrations of a panel of inflammatory cytokines occurred in CBS+INJ and CBS cocultures and cultures with S alone (IL-1, IL-6, IL-8, and TNF-α among others). CBS+INJ and CBS also showed increased chondrocyte death compared to uninjured CB. The release of sulfated glycosaminoglycans (sGAG) and associated ARGS-aggrecan neoepitope fragments to the medium was significantly increased in CBS and CBS+INJ groups. Distinct metabolomics profiles were observed for C, B, and S monocultures, and metabolites related to inflammatory response in CBS versus CB (e.g., kynurenine, 1-methylnicotinamide, and hypoxanthine) were identified. Conclusion: CBS and CBS+INJ models showed distinct cellular, inflammatory, and matrix-related alterations relevant to PTOA-like initiation/progression. The use of human knee tissues from donors that had no prior history of OA disease suggests the relevance of this model in highlighting the role of injury and inflammation in earliest stages of PTOA progression.
  •  
6.
  • Kosonen, Joonas P., et al. (author)
  • Injury-related cell death and proteoglycan loss in articular cartilage : Numerical model combining necrosis, reactive oxygen species, and inflammatory cytokines
  • 2023
  • In: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Osteoarthritis (OA) is a common musculoskeletal disease that leads to deterioration of articular cartilage, joint pain, and decreased quality of life. When OA develops after a joint injury, it is designated as post-traumatic OA (PTOA). The etiology of PTOA remains poorly understood, but it is known that proteoglycan (PG) loss, cell dysfunction, and cell death in cartilage are among the first signs of the disease. These processes, influenced by biomechanical and inflammatory stimuli, disturb the normal cell-regulated balance between tissue synthesis and degeneration. Previous computational mechanobiological models have not explicitly incorporated the cell-mediated degradation mechanisms triggered by an injury that eventually can lead to tissue-level compositional changes. Here, we developed a 2-D mechanobiological finite element model to predict necrosis, apoptosis following excessive production of reactive oxygen species (ROS), and inflammatory cytokine (interleukin-1)-driven apoptosis in cartilage explant. The resulting PG loss over 30 days was simulated. Biomechanically triggered PG degeneration, associated with cell necrosis, excessive ROS production, and cell apoptosis, was predicted to be localized near a lesion, while interleukin-1 diffusion-driven PG degeneration was manifested more globally. Interestingly, the model also showed proteolytic activity and PG biosynthesis closer to the levels of healthy tissue when pro-inflammatory cytokines were rapidly inhibited or cleared from the culture medium, leading to partial recovery of PG content. The numerical predictions of cell death and PG loss were supported by previous experimental findings. Furthermore, the simulated ROS and inflammation mechanisms had longer-lasting effects (over 3 days) on the PG content than localized necrosis. The mechanobiological model presented here may serve as a numerical tool for assessing early cartilage degeneration mechanisms and the efficacy of interventions to mitigate PTOA progression.
  •  
7.
  • Orozco, Gustavo A., et al. (author)
  • Shear strain and inflammation-induced fixed charge density loss in the knee joint cartilage following ACL injury and reconstruction : A computational study
  • 2022
  • In: Journal of Orthopaedic Research. - : Wiley. - 0736-0266 .- 1554-527X. ; 40:7, s. 1505-1522
  • Journal article (peer-reviewed)abstract
    • Excessive tissue deformation near cartilage lesions and acute inflammation within the knee joint after anterior cruciate ligament (ACL) rupture and reconstruction surgery accelerate the loss of fixed charge density (FCD) and subsequent cartilage tissue degeneration. Here, we show how biomechanical and biochemical degradation pathways can predict FCD loss using a patient-specific finite element model of an ACL reconstructed knee joint exhibiting a chondral lesion. Biomechanical degradation was based on the excessive maximum shear strains that may result in cell apoptosis, while biochemical degradation was driven by the diffusion of pro-inflammatory cytokines. We found that the biomechanical model was able to predict substantial localized FCD loss near the lesion and on the medial areas of the lateral tibial cartilage. In turn, the biochemical model predicted FCD loss all around the lesion and at intact areas; the highest FCD loss was at the cartilage–synovial fluid-interface and decreased toward the deeper zones. Interestingly, simulating a downturn of an acute inflammatory response by reducing the cytokine concentration exponentially over time in synovial fluid led to a partial recovery of FCD content in the cartilage. Our novel numerical approach suggests that in vivo FCD loss can be estimated in injured cartilage following ACL injury and reconstruction. Our novel modeling platform can benefit the prediction of PTOA progression and the development of treatment interventions such as disease-modifying drug testing and rehabilitation strategies.
  •  
8.
  • Swärd, Per, et al. (author)
  • Coculture of bovine cartilage with synovium and fibrous joint capsule increases aggrecanase and matrix metalloproteinase activity
  • 2017
  • In: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Background: A hallmark of osteoarthritis is increased proteolytic cleavage of aggrecan. Cross talk between cartilage and the synovium + joint capsule (SJC) can drive cartilage degradation by activating proteases in both tissues. We investigated aggrecan proteolysis patterns in cartilage explants using a physiologically relevant explant model of joint injury combining cartilage mechanical compression and coincubation with SJC. Methods: Bovine cartilage explants were untreated; coincubated with SJC; or subjected to mechanical injury and coincubated with SJC, mechanical injury alone, or mechanical injury and incubated with tumor necrosis factor-α (TNF-α). To compare the patterns of aggrecan proteolysis between 6 h and 16 days, release of sulfated glycosaminoglycans and specific proteolytic aggrecan fragments into medium or remaining in cartilage explants was measured by dimethylmethylene blue and Western blot analysis. Results: Aggrecanase activity toward aggrecan was observed in all conditions, but it was directed toward the TEGE↓ARGS interglobular domain (IGD) site only when cartilage was coincubated with SJC or TNF-α. Matrix metalloproteinase (MMP) activity at the aggrecan IGD site (IPES↓FFGV) was not detected when cartilage was exposed to TNF-α (up to 6 days), but it was in all other conditions. Compared with when bovine cartilage was left untreated or subjected to mechanical injury alone, additional aggrecan fragment types were released into medium and proteolysis of aggrecan started at an earlier time when SJC was present. Conclusions: Indicative of different proteolytic pathways for aggrecan degradation, the SJC increases both aggrecanase and MMP activity toward aggrecan, whereas TNF-α inhibits MMP activity against the IGD of aggrecan.
  •  
9.
  • Wang, Yang, et al. (author)
  • Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment
  • 2017
  • In: Matrix Biology. - : Elsevier BV. - 0945-053X. ; 63, s. 11-22
  • Journal article (peer-reviewed)abstract
    • Mechanical damage at the time of joint injury and the ensuing inflammatory response associated with elevated levels of pro-inflammatory cytokines in the synovial fluid, are reported to contribute to the progression to osteoarthritis after injury. In this exploratory study, we used a targeted proteomics approach to follow the progression of matrix degradation in response to mechanical damage and cytokine treatment of human knee cartilage explants, and thereby to study potential molecular biomarkers. This proteomics approach allowed us to unambiguously identify and quantify multiple peptides and proteins in the cartilage medium and explants upon treatment with ±. injurious compression ±. cytokines, treatments that mimic the earliest events in post-traumatic OA. We followed degradation of different protein domains, e.g., G1/G2/G3 of aggrecan, by measuring representative peptides of matrix proteins released into the medium at 7 time points throughout the 21-day culture period. COMP neo-epitopes, which were previously identified in the synovial fluid of knee injury/OA patients, were also released by these human cartilage explants treated with cyt and cyt+inj. The absence of collagen pro-peptides and elevated levels of specific COMP and COL3A1 neo-epitopes after human knee trauma may be relevant as potential biomarkers for post-traumatic OA. This model system thereby enables study of the kinetics of cartilage degradation and the identification of biomarkers within cartilage explants and those released to culture medium. Discovery proteomics revealed that candidate proteases were identified after specific treatment conditions, including MMP1, MMP-3, MMP-10 and MMP-13.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view