SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groop Leif) "

Sökning: WFRF:(Groop Leif)

  • Resultat 1-50 av 678
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Zuydam, NR, et al. (författare)
  • A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
  • 2018
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 67:7, s. 1414-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10−8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.
  •  
2.
  • Ahluwalia, Tarunveer S., et al. (författare)
  • A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes : results from an exome-wide association study of albuminuria
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:2, s. 292-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Identifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants. Methods: We performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included. Results: We identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, β = 0.27, p = 1.3 × 10−11) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (pinteraction = 7.0 × 10−4, β with diabetes = 0.69, β without diabetes = 0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (pBonferroni < 2.7 × 10−6). Conclusions/interpretation: The current study identifies a rare coding variant in the CUBN locus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. The findings provide new insights into the genetic architecture of albuminuria and highlight target genes and pathways for the prevention of diabetes-related kidney disease.
  •  
3.
  • Andersen, Mette K., et al. (författare)
  • Latent Autoimmune Diabetes in Adults Differs Genetically From Classical Type 1 Diabetes Diagnosed After the Age of 35 Years
  • 2010
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 33:9, s. 2062-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE- We studied differences between patients with latent autoimmune diabetes in adults (LADA), type 2 diabetes, and classical type 1 diabetes diagnosed after age 35 years. RESEARCH DESIGN AND METHODS- Polymorphisms in HLA-DQB1, INS, PTPN22, and CTLA4 were genotyped in patients with LADA (n = 213), type 1 diabetes diagnosed at >35 years of age (T1D(>35y); n = 257) or <20 years of age (T1D(<20y); n = 158), and type 2 diabetes. RESULTS- Although patients with LADA had an increased frequency of HLA-DQB1 and PTPN22 risk genotypes and alleles compared with type 2 diabetic subjects, the frequency was significantly lower compared with T1D(>35y) patients. Genotype frequencies, measures of insulin secretion, and metabolic traits within LADA differed according to GAD antibody (GADA) quartiles, but even the highest quartile differed from type 1 diabetes. Having two or more risk genotypes was associated with lower C-peptide concentrations in LADA. CONCLUSIONS- LADA patients differed genetically and phenotypically from both T1D(>35y) and type 2 diabetic patients in a manner dependent on GADA levels.
  •  
4.
  • Andersen, Mette, et al. (författare)
  • Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 57:9, s. 1859-1868
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Latent autoimmune diabetes in adults (LADA) is phenotypically a hybrid of type 1 and type 2 diabetes. Genetically LADA is poorly characterised but does share genetic predisposition with type 1 diabetes. We aimed to improve the genetic characterisation of LADA and hypothesised that type 2 diabetes-associated gene variants also predispose to LADA, and that the associations would be strongest in LADA patients with low levels of GAD autoantibodies (GADA). Methods We assessed 41 type 2 diabetes-associated gene variants in Finnish (phase I) and Swedish (phase II) patients with LADA (n=911) or type 1 diabetes (n=406), all diagnosed after the age of 35 years, as well as in non-diabetic control individuals 40 years or older (n=4,002). Results Variants in the ZMIZ1 (rs12571751, p=4.1 x 10(-5)) and TCF7L2 (rs7903146, p=5.8 x 10(-4)) loci were strongly associated with LADA. Variants in the KCNQ1 (rs2237895, p=0.0012), HHEX (rs1111875, p=0.0024 in Finns) and MTNR1B (rs10830963, p=0.0039) loci showed the strongest association in patients with low GADA, supporting the hypothesis that the disease in these patients is more like type 2 diabetes. In contrast, variants in the KLHDC5 (rs10842994, p=9.5 x 10(-4) in Finns), TP53INP1 (rs896854, p=0.005), CDKAL1 (rs7756992, p=7.0 x 10(-4); rs7754840, p=8.8 x 10(-4)) and PROX1 (rs340874, p=0.003) loci showed the strongest association in patients with high GADA. For type 1 diabetes, a strong association was seen for MTNR1B (rs10830963, p=3.2 x 10(-6)) and HNF1A (rs2650000, p=0.0012). Conclusions/interpretation LADA and adult-onset type 1 diabetes share genetic risk variants with type 2 diabetes, supporting the idea of a hybrid form of diabetes and distinguishing them from patients with classical young-onset type 1 diabetes.
  •  
5.
  • Andersson, Anneli, et al. (författare)
  • Continuous and simultaneous determination of venous blood metabolites
  • 2017
  • Ingår i: Talanta. - : Elsevier BV. - 0039-9140. ; 171, s. 270-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic syndrome is associated with cardiovascular disease, type 2 diabetes mellitus (T2DM) and prediabetes. Metabolic syndrome is a cluster of interrelated clinical disorders. Difficulties in regulating glucose levels in blood are implicated in many of these disorders. Lactate, another energy metabolite, is produced under anaerobic conditions and can be used to monitor the balance between aerobic and anaerobic metabolism. Tested together, these metabolite levels can provide pro-diagnostic information that improves patient outcomes. Glucose and lactate were determined continuously and simultaneously in whole blood using a dual-channel thermal biosensor device in which one channel employed glucose oxidase for glucose analysis in comparison with lactate oxidase for lactate analysis in the others. No detectable clogging or interference was observed using venous blood samples. The linear detection range for both the glucose and lactate assays was 0.5–45 mM. The sampling rate of up to 24 samples per hour with assay cycle time of 2.5 min was achieved. Comparative analysis between our device and the HemoCue method showed an excellent correlation. The device was stable for hundreds of injections over a period of 45 days. The broad linear range, fast response and detection sensitivity are satisfactory for the clinical requirements, e.g. for diabetic or cardiovascular patients in intensive care units or surgical operation, where the tight control of blood glucose can decrease morbidity or mortality.
  •  
6.
  • Barreiro, Karina, et al. (författare)
  • Urinary extracellular vesicles : Assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research
  • 2021
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.
  •  
7.
  • Berglund, Lisa, et al. (författare)
  • Glucose-Dependent Insulinotropic Polypeptide (GIP) Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB.
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:1, s. 239-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with extrapancreatic effects beyond glycemic control. Here we demonstrate unexpected effects of GIP signaling in the vasculature. GIP induces the expression of the pro-atherogenic cytokine osteopontin (OPN) in mouse arteries, via local release of endothelin-1 (ET-1) and activation of cAMP response element binding protein (CREB). Infusion of GIP increases plasma OPN levels in healthy individuals. Plasma ET-1 and OPN levels are positively correlated in patients with critical limb ischemia. Fasting GIP levels are higher in individuals with a history of cardiovascular disease (myocardial infarction, stroke) when compared to controls. GIP receptor (GIPR) and OPN mRNA levels are higher in carotid endarterectomies from patients with symptoms (stroke, transient ischemic attacks, amaurosis fugax) than in asymptomatic patients; and expression associates to parameters characteristic of unstable and inflammatory plaques (increased lipid accumulation, macrophage infiltration and reduced smooth muscle cell content). While GIPR expression is predominantly endothelial in healthy arteries from human, mouse, rat and pig; remarkable up-regulation is observed in endothelial and smooth muscle cells upon culture conditions yielding a "vascular disease-like" phenotype. Moreover, a common variant rs10423928 in the GIPR gene associated with increased risk of stroke in type 2 diabetes patients.
  •  
8.
  • Dwivedi, Om Prakash, et al. (författare)
  • Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease
  • 2023
  • Ingår i: iScience. - 2589-0042. ; 26:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) are a largely unexplored source of kidney-derived mRNAs with potential to serve as a liquid kidney biopsy. We assessed ∼200 uEV mRNA samples from clinical studies by genome-wide sequencing to discover mechanisms and candidate biomarkers of diabetic kidney disease (DKD) in Type 1 diabetes (T1D) with replication in Type 1 and 2 diabetes. Sequencing reproducibly showed >10,000 mRNAs with similarity to kidney transcriptome. T1D DKD groups showed 13 upregulated genes prevalently expressed in proximal tubules, correlated with hyperglycemia and involved in cellular/oxidative stress homeostasis. We used six of them (GPX3, NOX4, MSRB, MSRA, HRSP12 and CRYAB) to construct a transcriptional “stress score” that reflected long-term decline of kidney function and could even identify normoalbuminuric individuals showing early decline. We thus provide workflow and web-resource for studying uEV transcriptomes in clinical urine samples and stress-linked DKD markers as potential early non-invasive biomarkers or drug targets.
  •  
9.
  • Fagerholm, E., et al. (författare)
  • SNP in the genome-wide association study hotspot on chromosome 9p21 confers susceptibility to diabetic nephropathy in type 1 diabetes
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 55:9, s. 2386-2393
  • Tidskriftsartikel (refereegranskat)abstract
    • Parental type 2 diabetes mellitus increases the risk of diabetic nephropathy in offspring with type 1 diabetes mellitus. Several single nucleotide polymorphisms (SNPs) that predispose to type 2 diabetes mellitus have recently been identified. It is, however, not known whether such SNPs also confer susceptibility to diabetic nephropathy in patients with type 1 diabetes mellitus. We genotyped nine SNPs associated with type 2 diabetes mellitus in genome-wide association studies in the Finnish population, and tested for their association with diabetic nephropathy as well as with severe retinopathy and cardiovascular disease in 2,963 patients with type 1 diabetes mellitus. Replication of significant SNPs was sought in 2,980 patients from three other cohorts. In the discovery cohort, rs10811661 near gene CDKN2A/B was associated with diabetic nephropathy. The association remained after robust Bonferroni correction for the total number of tests performed in this study (OR 1.33 [95% CI 1.14, 1.56], p = 0.00045, p (36tests) = 0.016). In the meta-analysis, the combined result for diabetic nephropathy was significant, with a fixed effects p value of 0.011 (OR 1.15 [95% CI 1.02, 1.29]). The association was particularly strong when patients with end-stage renal disease were compared with controls (OR 1.35 [95% CI 1.13, 1.60], p = 0.00038). The same SNP was also associated with severe retinopathy (OR 1.37 [95% CI 1.10, 1.69] p = 0.0040), but the association did not remain after Bonferroni correction (p (36tests) = 0.14). None of the other selected SNPs was associated with nephropathy, severe retinopathy or cardiovascular disease. A SNP predisposing to type 2 diabetes mellitus, rs10811661 near CDKN2A/B, is associated with diabetic nephropathy in patients with type 1 diabetes mellitus.
  •  
10.
  • Gao, Xiang, et al. (författare)
  • Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats
  • 2018
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 6:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, and affects -cell turnover. This study aimed at evaluating if some of the beneficial effects of GIP on glucose homeostasis can be explained by modulation of islet blood flow. Anesthetized Sprague-Dawley rats were infused intravenously with different doses of GIP (10, 20, or 60ng/kg*min) for 30min. Subsequent organ blood flow measurements were performed with microspheres. In separate animals, islets were perfused exvivo with GIP (10(-6)-10(-12)mol/L) during normo- and hyperglycemia and arteriolar responsiveness was recorded. The highest dose of GIP potentiated insulin secretion during hyperglycemia, but had no effect in normoglycemic rats. The highest GIP concentration decreased blood perfusion of whole pancreas, pancreatic islets, duodenum, colon, liver and kidneys. The decrease in blood flow was unaffected by ganglion blockade or adenosine receptor inhibition. In contrast to this, in single perfused islets GIP induced a dose-dependent arteriolar dilation. Thus, high doses of GIP exert a direct dilatory effect on islet arterioles in isolated islets, but induce a generalized vasoconstriction in splanchnic organs, including the whole pancreas and islets, invivo. The latter effect is unlikely to be mediated by adenosine, the autonomic nervous system, or endothelial mediators.
  •  
11.
  • Jain, Ruchi, et al. (författare)
  • Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual beta-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.
  •  
12.
  •  
13.
  •  
14.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
15.
  • Meng, Weihua, et al. (författare)
  • A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes
  • 2018
  • Ingår i: Acta Ophthalmologica. - : Wiley. - 1755-375X. ; 96:7, s. 811-819
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Diabetic retinopathy is the most common eye complication in patients with diabetes. The purpose of this study is to identify genetic factors contributing to severe diabetic retinopathy. Methods: A genome-wide association approach was applied. In the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) datasets, cases of severe diabetic retinopathy were defined as type 2 diabetic patients who were ever graded as having severe background retinopathy (Level R3) or proliferative retinopathy (Level R4) in at least one eye according to the Scottish Diabetic Retinopathy Grading Scheme or who were once treated by laser photocoagulation. Controls were diabetic individuals whose longitudinal retinopathy screening records were either normal (Level R0) or only with mild background retinopathy (Level R1) in both eyes. Significant Single Nucleotide Polymorphisms (SNPs) were taken forward for meta-analysis using multiple Caucasian cohorts. Results: Five hundred and sixty cases of type 2 diabetes with severe diabetic retinopathy and 4,106 controls were identified in the GoDARTS cohort. We revealed that rs3913535 in the NADPH Oxidase 4 (NOX4) gene reached a p value of 4.05 × 10−9. Two nearby SNPs, rs10765219 and rs11018670 also showed promising p values (p values = 7.41 × 10−8 and 1.23 × 10−8, respectively). In the meta-analysis using multiple Caucasian cohorts (excluding GoDARTS), rs10765219 and rs11018670 showed associations for diabetic retinopathy (p = 0.003 and 0.007, respectively), while the p value of rs3913535 was not significant (p = 0.429). Conclusion: This genome-wide association study of severe diabetic retinopathy suggests new evidence for the involvement of the NOX4 gene.
  •  
16.
  • Ottosson Laakso, Emilia, et al. (författare)
  • Influence of Familial Renal Glycosuria Due to Mutations in the SLC5A2 Gene on Changes in Glucose Tolerance over Time.
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial renal glycosuria is an inherited disorder resulting in glucose excretion in the urine despite normal blood glucose concentrations. It is most commonly due to mutations in the SLC5A2 gene coding for the glucose transporter SGLT2 in the proximal tubule. Several drugs have been introduced as means to lower glucose in patients with type 2 diabetes targeting SGLT2 resulting in renal glycosuria, but no studies have addressed the potential effects of decreased renal glucose reabsorption and chronic glycosuria on the prevention of glucose intolerance. Here we present data on a large pedigree with renal glycosuria due to two mutations (c.300-303+2del and p.A343V) in the SLC5A2 gene. The mutations, which in vitro affected glucose transport in a cell line model, and the ensuing glycosuria were not associated with better glycemic control during a follow-up period of more than 10 years. One individual, who was compound heterozygous for mutations in the SLC5A2 gene suffered from severe urogenital candida infections and postprandial hypoglycemia. In conclusion, in this family with familial glycosuria we did not find any evidence that chronic loss of glucose in the urine would protect from deterioration of the glucose tolerance over time.
  •  
17.
  • Ronnback, Mats, et al. (författare)
  • Complex Relationship Between Blood Pressure and Mortality in Type 2 Diabetic Patients. A Follow-Up of the Botnia Study.
  • 2006
  • Ingår i: Hypertension. - 1524-4563. ; 47:Dec 27, s. 168-173
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of hypertension aggravates the high cardiovascular risk in type 2 diabetic patients. Pulse pressure is a marker of arterial stiffness and constitutes a risk factor for cardiovascular mortality. This study examines the relationship between different blood pressure indices and mortality in a cohort of type 2 diabetic patients. A total of 1294 type 2 diabetic patients with a median age of 69.1 years participated in the Botnia Study from 1990 to 1997. In 2004, after a median follow-up of 9.5 years, data on mortality was collected from the national population registry and hospital records. Systolic and diastolic blood pressure correlated negatively with mortality after adjustment for other risk factors. The association between low systolic and diastolic blood pressure and mortality was pronounced in patients with previous cardiovascular disease. A U-shaped association between pulse pressure and mortality was observed in elderly patients. These observations could be linked to arterial stiffness and heart failure. Low blood pressure in high-risk patients is likely to be a marker of poor health rather than the cause of mortality. The results suggest that the role of blood pressure as a risk marker in elderly type 2 diabetic patients with cardiovascular disease needs to be reevaluated.
  •  
18.
  •  
19.
  • Sandholm, Niina, et al. (författare)
  • Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes
  • 2014
  • Ingår i: Diabetologia. - Berlin Heidelberg : Springer-Verlag. - 0012-186X .- 1432-0428. ; 57:6, s. 1143-1153
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: An abnormal urinary albumin excretion rate (AER) is often the first clinically detectable manifestation of diabetic nephropathy. Our aim was to estimate the heritability and to detect genetic variation associated with elevated AER in patients with type 1 diabetes.METHODS: The discovery phase genome-wide association study (GWAS) included 1,925 patients with type 1diabetes and with data on 24 h AER. AER was analysed as a continuous trait and the analysis was stratified by the use of antihypertensive medication. Signals with a p value <10(-4) were followed up in 3,750 additional patients withtype 1 diabetes from seven studies.RESULTS: The narrow-sense heritability, captured with our genotyping platform, was estimated to explain 27.3% of the total AER variability, and 37.6% after adjustment for covariates. In the discovery stage, five single nucleotide polymorphisms in the GLRA3 gene were strongly associated with albuminuria (p < 5 × 10(-8)). In the replication group, a nominally significant association (p = 0.035) was observed between albuminuria and rs1564939 in GLRA3, but this was in the opposite direction. Sequencing of the surrounding genetic region in 48 Finnish and 48 UK individuals supported the possibility that population-specific rare variants contribute to the synthetic associationobserved at the common variants in GLRA3. The strongest replication (p = 0.026) was obtained for rs2410601 between the PSD3 and SH2D4A genes. Pathway analysis highlighted natural killer cell mediated immunity processes.CONCLUSIONS/INTERPRETATION: This study suggests novel pathways and molecular mechanisms for the pathogenesis of albuminuria in type 1 diabetes.
  •  
20.
  • Sandholm, Niina, et al. (författare)
  • Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease
  • 2022
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 65:9, s. 1495-1509
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. Methods: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. Results: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10−9; although not withstanding correction for multiple testing, p>9.3×10−9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN–RESP18, GPR158, INIP–SNX30, LSM14A and MFF; p<2.7×10−6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10−6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10−11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10−8] and negatively with tubulointerstitial fibrosis [p=2.0×10−9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10−16], and SNX30 expression correlated positively with eGFR [p=5.8×10−14] and negatively with fibrosis [p<2.0×10−16]). Conclusions/interpretation: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. Data availability: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages (https://t1d.hugeamp.org/downloads.html; https://t2d.hugeamp.org/downloads.html; https://hugeamp.org/downloads.html). Graphical abstract: [Figure not available: see fulltext.]
  •  
21.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
22.
  • Sandholm, Niina, et al. (författare)
  • The genetic landscape of renal complications in type 1 diabetes
  • 2017
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673. ; 28:2, s. 557-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4310-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associatedvariants.Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2310-5) and the risk of type 2 diabetes (P=6.1310-4) associated with the risk of diabetic kidney disease.Wealso found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1310-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0310-6), and pentose and glucuronate interconversions (P=3.0310-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
  •  
23.
  • Simonsen, Johan R, et al. (författare)
  • Genetic factors affect the susceptibility to bacterial infections in diabetes
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes increases the risk of bacterial infections. We investigated whether common genetic variants associate with infection susceptibility in Finnish diabetic individuals. We performed genome-wide association studies and pathway analysis for bacterial infection frequency in Finnish adult diabetic individuals (FinnDiane Study; N = 5092, Diabetes Registry Vaasa; N = 4247) using national register data on antibiotic prescription purchases. Replication analyses were performed in a Swedish diabetic population (ANDIS; N = 9602) and in a Finnish non-diabetic population (FinnGen; N = 159,166). Genome-wide data indicated moderate but significant narrow-sense heritability for infection susceptibility (h2 = 16%, P = 0.02). Variants on chromosome 2 were associated with reduced infection susceptibility (rs62192851, P = 2.23 × 10-7). Homozygotic carriers of the rs62192851 effect allele (N = 44) had a 37% lower median annual antibiotic purchase rate, compared to homozygotic carriers of the reference allele (N = 4231): 0.38 [IQR 0.22-0.90] and 0.60 [0.30-1.20] respectively, P = 0.01). Variants rs6727834 and rs10188087, in linkage disequilibrium with rs62192851, replicated in the FinnGen-cohort (P < 0.05), but no variants replicated in the ANDIS-cohort. Pathway analysis suggested the IRAK1 mediated NF-κB activation through IKK complex recruitment-pathway to be a mediator of the phenotype. Common genetic variants on chromosome 2 may associate with reduced risk of bacterial infections in Finnish individuals with diabetes.
  •  
24.
  • Skyler, Jay S, et al. (författare)
  • Differentiation of diabetes by pathophysiology, natural history, and prognosis
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:2, s. 241-255
  • Forskningsöversikt (refereegranskat)abstract
    • The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, "The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis" on 10-12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment.
  •  
25.
  • van de Vegte, Yordi, et al. (författare)
  • Genetic insights into resting heart rate and its role in cardiovascular disease
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetics and clinical consequences of resting heart rate (RHR) remain incompletely understood. Here, the authors discover new genetic variants associated with RHR and find that higher genetically predicted RHR decreases risk of atrial fibrillation and ischemic stroke. Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
  •  
26.
  • van Zuydam, Natalie, et al. (författare)
  • Genome-Wide Association Study of Peripheral Artery Disease
  • 2021
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 2574-8300. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status. Methods: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status. Results: We identified 5 genome-wide significant (P-association <= 5x10(-8)) associations with PAD in 449 548 (N-cases=12 086) individuals of European ancestry near LPA (lipoprotein [a]), CDKN2BAS1 (CDKN2B antisense RNA 1), SH2B3 (SH2B adaptor protein 3) - PTPN11 (protein tyrosine phosphatase non-receptor type 11), HDAC9 (histone deacetylase 9), and CHRNA3 (cholinergic receptor nicotinic alpha 3 subunit) loci (which overlapped previously reported associations). Meta-analysis with variants previously associated with PAD showed that 18 of 19 published variants remained genome-wide significant. In individuals with diabetes, rs116405693 at the CCSER1 (coiled-coil serine rich protein 1) locus was associated with PAD (odds ratio [95% CI], 1.51 [1.32-1.74], P-diabetes=2.5x10(-9), P-interactionwithdiabetes=5.3x10(-7)). Furthermore, in smokers, rs12910984 at the CHRNA3 locus was associated with PAD (odds ratio [95% CI], 1.15 [1.11-1.19], P-smokers=9.3x10(-10), P-interactionwithsmoking=3.9x10(-5)). Conclusions: Our analyses confirm the published genetic associations with PAD and identify novel variants that may influence susceptibility to PAD in the context of diabetes or smoking status.
  •  
27.
  •  
28.
  •  
29.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Fasting Versus Postload Plasma Glucose Concentration and the Risk for Future Type 2 Diabetes Results from the Botnia Study
  • 2009
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 32:2, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - The purpose of this study was to assess the efficacy of the postload plasma glucose concentration in predicting future risk of type 2 diabetes, compared with prediction models based oil measurement. of the fasting plasma glucose (FPG) concentration. RESEARCH DESIGN AND METHODS - A total of 2,442 subjects from the Botnia Study, who were free Of type 2 diabetes at baseline, received an oral glucose tolerance test (OGTT) at baseline and after 7-8 years of follow-up. Future risk for type 2 diabetes was assessed with area under the receiver-operating characteristic curve for prediction models based up measurement of the FPG concentration 1) with or without a 1-h plasma glucose concentration during the OGTT and 2) with or without the metabolic syndrome. RESULTS - Prediction models based on measurement of the FPG concentration were weak predictors for the risk of Future type 2 diabetes. Addition of a 1-h plasma glucose Concentration markedly enhanced prediction Of the risk of future type 2 diabetes. A cut point of 155 mg/dl for the 1-h plasma glucose concentration during the OGTT and presence Of the metabolic syndrome were used to Stratify subjects in each glucose tolerance group into low, intermediate, and high risk for future type 2 diabetes. CONCLUSIONS - The plasma glucose concentration at 1 h during the OGTT is a Strong predictor of future risk for type 2 diabetes and adds to the prediction power of models based on measurements made during the fasting state. A plasma glucose cut point of 155 mg/dl Plus the Adult Treatment Panel III criteria for the metabolic syndrome can be used to stratify nondiabetic subjects into low-, intermediate-, and high-risk groups.
  •  
30.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Minimal Contribution of Fasting Hyperglycemia to the Incidence of Type 2 Diabetes in Subjects With Normal 2-h Plasma Glucose
  • 2010
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 33:3, s. 557-561
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - To assess the relative contribution of increased fasting and postload plasma glucose concentrations to the incidence of type 2 diabetes in subjects with a normal 2-h plasma glucose concentration. RESEARCH DESIGN AND METHODS - A total of 3,450 subjects with 2-h plasma glucose concentration < 140 mg/dl at baseline were followed up in the San Antonio Heart Study (SAHS) and the Botnia Study for 7-8 years. The incidence of type 2 diabetes at follow-up was related to the fasting, 1-h, and 2-h plasma glucose concentrations. RESULTS - in subjects with 2-h plasma glucose < 140 mg/dl, the incidence of type 2 diabetes increased with increasing fasting plasma glucose (FPG) and 1-h and 2-h plasma glucose concentrations. In a multivariate logistic analysis, after adjustment for all diabetes risk factors, the FPG concentration was a Strong predictor Of type 2 diabetes in both the SAHS and the Botnia Study (P < 0.0001). However, when the 1-h plasma glucose, but not 2-h plasma glucose, concentration was added to the model, FPG concentration was no longer a significant predictor of type 2 diabetes in both Studies (NS). When subjects were matched for the level of 1-h plasma glucose concentration, the incidence Of type 2 diabetes markedly increased with the increase in 1-h plasma glucose, but the increase in FPG was not associated with a significant increase in the incidence of type 2 diabetes. CONCLUSIONS - An increase in postload glycemia in the normal range is associated with an increase in the incidence of type 2 diabetes. After controlling for 1-h plasma glucose concentration, the increase in FPG concentration is not associated with an increase in the incidence of type 2 diabetes.
  •  
31.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes
  • 2010
  • Ingår i: Diabetes/Metabolism Research & Reviews. - : Wiley. - 1520-7552 .- 1520-7560. ; 26:4, s. 280-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The aim of the study is to assess the relationship between the shape of plasma glucose concentration during the OGTT and future risk for T2DM. Methods 2445 non-diabetic subjects from the Botnia study received an OGTT at baseline and after 7-8 years of follow-up. Results NGT and IFG subjects who returned their plasma glucose concentration following an ingested glucose load below FPG within 60 min had increased insulin sensitivity, greater insulin secretion and lower risk for future T2DM compared to NGT and IFG subjects whose post-load plasma glucose concentration required 120 min or longer to return their plasma glucose level to FPG level. IGT subjects who had a lower plasma glucose concentration at 1-h compared to 2-h during oGrr had greater insulin sensitivity, better beta cell function and lower risk for future T2DM. Conclusions These data suggest that the shape of glucose curve can be utilized to assess future risk for T2DM. Copyright (C) 2010 John Wiley & Sons, Ltd.
  •  
32.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk
  • 2011
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 34:9, s. 2108-2112
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-To develop a model for the prediction of type 2 diabetes mellitus (T2DM) risk on the basis of a multivariate logistic model and 1-h plasma glucose concentration (1-h PG). RESEARCH DESIGN AND METHODS-The model was developed in a cohort of 1,562 non-diabetic subjects from the San Antonio Heart Study (SAHS) and validated in 2,395 nondiabetic subjects in the Botnia Study. A risk score on the basis of anthropometric parameters, plasma glucose and lipid profile, and blood pressure was computed for each subject. Subjects with a risk score above a certain cut point were considered to represent high-risk individuals, and their 1-h PG concentration during the oral glucose tolerance test was used to further refine their future T2DM risk. RESULTS-We used the San Antonio Diabetes Prediction Model (SADPM) to generate the initial risk score. A risk-score value of 0.065 was found to be an optimal cut point for initial screening and selection of high-risk individuals. A 1-h PG concentration >140 mg/dL in high-risk individuals (whose risk score was >0.065) was the optimal cut point for identification of subjects at increased risk. The two cut points had 77.8, 77.4, and 44.8% (for the SAHS) and 75.8, 71.6, and 11.9% (for the Botnia Study) sensitivity, specificity, and positive predictive value, respectively, in the SAHS and Botnia Study. CONCLUSIONS-A two-step model, based on the combination of the SADPM and 1-h PG, is a useful tool for the identification of high-risk Mexican-American and Caucasian individuals. Diabetes Care 34:2108-2112, 2011
  •  
33.
  • Abels, Mia, et al. (författare)
  • CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:9, s. 1928-1937
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart(-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. Methods CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca2+ oscillation patterns and exocytosis were studied in mouse islets. Results We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca2+ signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. Conclusions/interpretation We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.
  •  
34.
  •  
35.
  • Ahlqvist, Emma, et al. (författare)
  • A common variant upstream of the PAX6 gene influences islet function in man.
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 55, s. 94-104
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Impaired glucose tolerance and impaired insulin secretion have been reported in families with PAX6 mutations and it is suggested that they result from defective proinsulin processing due to lack of prohormone convertase 1/3, encoded by PCSK1. We investigated whether a common PAX6 variant would mimic these findings and explored in detail its effect on islet function in man. METHODS: A PAX6 candidate single nucleotide polymorphism (rs685428) was associated with fasting insulin levels in the Diabetes Genetics Initiative genome-wide association study. We explored its potential association with glucose tolerance and insulin processing and secretion in three Scandinavian cohorts (N = 8,897 individuals). In addition, insulin secretion and the expression of PAX6 and transcriptional target genes were studied in human pancreatic islets. RESULTS: rs685428 G allele carriers had lower islet mRNA expression of PAX6 (p = 0.01) and PCSK1 (p = 0.001) than AA homozygotes. The G allele was associated with increased fasting insulin (p (replication) = 0.02, p (all) = 0.0008) and HOMA-insulin resistance (p (replication) = 0.02, p (all) = 0.001) as well as a lower fasting proinsulin/insulin ratio (p (all) = 0.008) and lower fasting glucagon (p = 0.04) and gastric inhibitory peptide (GIP) (p = 0.05) concentrations. Arginine-stimulated (p = 0.02) insulin secretion was reduced in vivo, which was further reflected by a reduction of glucose- and potassium-stimulated insulin secretion (p = 0.002 and p = 0.04, respectively) in human islets in vitro. CONCLUSIONS/INTERPRETATION: A common variant in PAX6 is associated with reduced PAX6 and PCSK1 expression in human islets and reduced insulin response, as well as decreased glucagon and GIP concentrations and decreased insulin sensitivity. These findings emphasise the central role of PAX6 in the regulation of islet function and glucose metabolism in man.
  •  
36.
  • Ahlqvist, Emma, et al. (författare)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2088-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
37.
  •  
38.
  • Ahlqvist, Emma, et al. (författare)
  • Genetics of type 2 diabetes
  • 2011
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 57:2, s. 241-254
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Type 2 diabetes (T2D) is a complex disorder that is affected by multiple genetic and environmental factors. Extensive efforts have been made to identify the disease-affecting genes to better understand the disease pathogenesis, find new targets for clinical therapy, and allow prediction of disease.Content: Our knowledge about the genes involved in disease pathogenesis has increased substantially in recent years, thanks to genomewide association studies and international collaborations joining efforts to collect the huge numbers of individuals needed to study complex diseases on a population level. We have summarized what we have learned so far about the genes that affect T2D risk and their functions. Although more than 40 loci associated with T2D or glycemic traits have been reported and reproduced, only a minor part of the genetic component of the disease has been explained, and the causative variants and affected genes are unknown for many of the loci.Summary: Great advances have recently occurred in our understanding of the genetics of T2D, but much remains to be learned about the disease etiology. The genetics of T2D has so far been driven by technology, and we now hope that next-generation sequencing will provide important information on rare variants with stronger effects. Even when variants are known, however, great effort will be required to discover how they affect disease risk.
  •  
39.
  •  
40.
  • Ahlqvist, Emma, et al. (författare)
  • Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables
  • 2018
  • Ingår i: The Lancet Diabetes and Endocrinology. - 2213-8587 .- 2213-8595. ; 6:5, s. 361-369
  • Tidskriftsartikel (refereegranskat)abstract
    •  BackgroundDiabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis.MethodsWe did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and homoeostatic model assessment 2 estimates of β-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations.FindingsWe identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes.InterpretationWe stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.
  •  
41.
  • Ahlqvist, Emma, et al. (författare)
  • Subtypes of type 2 diabetes determined from clinical parameters
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2086-2093
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) is defined by a single metabolite, glucose, but is increasingly recognized as a highly heterogeneous disease, including individuals with varying clinical characteristics, disease progression, drug response, and risk of complications. Identification of subtypes with differing risk profiles and disease etiologies at diagnosis could open up avenues for personalized medicine and allow clinical resources to be focused to the patients who would be most likely to develop diabetic complications, thereby both im-proving patient health and reducing costs for the health sector. More homogeneous populations also offer increased power in experimental, genetic, and clinical studies. Clinical parameters are easily available and reflect relevant disease pathways, including the effects of both genetic and environmental exposures. We used six clinical parameters (GAD autoantibodies, age at diabetes onset, HbA1c, BMI, and measures of insulin resistance and insulin secretion) to cluster adult-onset diabetes patients into five subtypes. These sub-types have been robustly reproduced in several populations and associated with different risks of complications, comor-bidities, genetics, and response to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group had the highest risk for diabetic kidney disease (DKD) and fatty liver, empha-sizing the importance of insulin resistance for DKD and hepatosteatosis in T2D. In conclusion, we believe that sub-classification using these highly relevant parameters could provide a framework for personalized medicine in diabetes.
  •  
42.
  • Ahlqvist, Emma, et al. (författare)
  • The genetics of diabetic complications.
  • 2015
  • Ingår i: Nature Reviews Nephrology. - : Springer Science and Business Media LLC. - 1759-507X .- 1759-5061. ; 11:5, s. 277-287
  • Forskningsöversikt (refereegranskat)abstract
    • The rising global prevalence of diabetes mellitus is accompanied by an increasing burden of morbidity and mortality that is attributable to the complications of chronic hyperglycaemia. These complications include blindness, renal failure and cardiovascular disease. Current therapeutic options for chronic hyperglycaemia reduce, but do not eradicate, the risk of these complications. Success in defining new preventative and therapeutic strategies hinges on an improved understanding of the molecular processes involved in the development of these complications. This Review explores the role of human genetics in delivering such insights, and describes progress in characterizing the sequence variants that influence individual predisposition to diabetic kidney disease, retinopathy, neuropathy and accelerated cardiovascular disease. Numerous risk variants for microvascular complications of diabetes have been reported, but very few have shown robust replication. Furthermore, only limited evidence exists of a difference in the repertoire of risk variants influencing macrovascular disease between those with and those without diabetes. Here, we outline the challenges associated with the genetic analysis of diabetic complications and highlight ongoing efforts to deliver biological insights that can drive translational benefits.
  •  
43.
  • Ahlqvist, Emma, et al. (författare)
  • The genetics of type 2 diabetes
  • 2015. - 4th
  • Ingår i: International Textbook of Diabetes Mellitus. - : Wiley. - 9780470658611 - 9781118387658 ; , s. 401-412
  • Bokkapitel (refereegranskat)
  •  
44.
  • Ahlqvist, Emma, et al. (författare)
  • Towards improved precision and a new classification of diabetes mellitus
  • 2022
  • Ingår i: Journal of Endocrinology. - 1479-6805. ; 252:3, s. 59-70
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) is one of the fastest increasing diseases worldwide. Although it is defined by a single metabolite, glucose, it is increasingly recognized as a highly heterogeneous disease with varying clinical manifestations. Identification of different subtypes at an early stage of disease when complications might still be prevented could hopefully allow for more personalized medicine. An important step towards precision medicine would be to target the right resources to the right patients, thereby improving patient health and reducing health costs for the society. More well-defined disease populations also offer increased power in experimental, genetic and clinical studies. In a recent study, we used six clinical variables (GAD autoantibodies, age at onset of diabetes, HbA1c, BMI, and simple measures of insulin resistance and insulin secretion (so called HOMA estimates) to cluster adult-onset diabetes patients into five subgroups. These subgroups have been robustly reproduced in several populations worldwide and are associated with different risks of diabetic complications and responses to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group has the highest risk for diabetic kidney disease (DKD) and fatty liver. This emphasizes the key role of insulin resistance in the pathogenesis of DKD and fatty liver in T2D. In conclusion, this novel sub-classification, breaking down T2D in clinically meaningful subgroups, provides the prerequisite framework for expanded personalized medicine in diabetes beyond what is already available for monogenic and to some extent type 1 diabetes.
  •  
45.
  • Ahluwalia, Tarun, et al. (författare)
  • Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes.
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 54, s. 2295-2302
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Several genome-wide linkage studies have shown an association between diabetic nephropathy and a locus on chromosome 18q harbouring two carnosinase genes, CNDP1 and CNDP2. Carnosinase degrades carnosine (β-alanyl-L-: histidine), which has been ascribed a renal protective effect as a scavenger of reactive oxygen species. We investigated the putative associations of genetic variants in CNDP1 and CNDP2 with diabetic nephropathy (defined either as micro- or macroalbuminuria) and estimated GFR in type 2 diabetic patients from Sweden. METHODS: We genotyped nine single nucleotide polymorphisms (SNPs) and one trinucleotide repeat polymorphism (D18S880, five to seven leucine repeats) in CNDP1 and CNDP2 in a case-control set-up including 4,888 unrelated type 2 diabetic patients (with and without nephropathy) from Sweden (Scania Diabetes Registry). RESULTS: Two SNPs, rs2346061 in CNDP1 and rs7577 in CNDP2, were associated with an increased risk of diabetic nephropathy (rs2346061 p = 5.07 × 10(-4); rs7577 p = 0.021). The latter was also associated with estimated GFR (β = -0.037, p = 0.014), particularly in women. A haplotype including these SNPs (C-C-G) was associated with a threefold increased risk of diabetic nephropathy (OR 2.98, 95% CI 2.43-3.67, p < 0.0001). CONCLUSIONS/INTERPRETATION: These data suggest that common variants in CNDP1 and CNDP2 play a role in susceptibility to kidney disease in patients with type 2 diabetes.
  •  
46.
  •  
47.
  • Ahluwalia, Tarunveer S, et al. (författare)
  • Uromodulin gene variant is associated with type 2 diabetic nephropathy.
  • 2011
  • Ingår i: Journal of Hypertension. - 1473-5598. ; 29, s. 1731-1734
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: About 35% of individuals with type 2 diabetes develop persistent albuminuria, lose renal function, and are at increased risk for microvascular complications like diabetic nephropathy. Recent genome-wide association studies have identified the uromodulin locus (UMOD), encoding the most common protein in human urine to be associated with hypertension and also with chronic kidney disease (CKD). In the present study we examined the association of the common variant of the uromodulin (UMOD) gene with type 2 diabetic nephropathy and kidney function. METHODS: UMOD variant rs13333226 was genotyped in a case-control material including 4888 unrelated type 2 diabetic individuals (n = 880 with and n = 4008 without nephropathy) from Sweden (Scania Diabetes Registry) using the ABI Real time TaqMan allelic discrimination assay. RESULTS: The G allele of rs13333226 was associated with a decreased risk of nephropathy [odds ratio (OR) 0.80, 95% confidence interval (CI) 0.69-0.91, P = 0.001] after correction for confounding factors like age, sex, body mass index (BMI), blood pressure, kidney function, smoking and duration of diabetes. The same allele was also associated with a better kidney function [estimated glomerular filtration rate (eGFR), β = 0.117, P < 0.0001] and lower systolic blood pressure (β = -0.048, P = 0.013) in the overall study cohort. CONCLUSION/INTERPRETATION: The present study highlights that the common variant of the UMOD gene is protective against diabetic nephropathy susceptibility and also affects kidney function and blood pressure in patients with type 2 diabetes. However, the association with diabetic nephropathy was independent of blood pressure and kidney function.
  •  
48.
  • Ahlzén, Maja, et al. (författare)
  • Expression of the transcription factor 7-like 2 gene (TCF7L2) in human adipocytes is down regulated by insulin.
  • 2008
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 370, s. 49-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the TCF7L2 gene (transcription factor 7-like 2) have shown strong association with type 2 diabetes with two defined risk haplotypes, HapA and HapB(T2D). TCF7L2 may play a role in both glucose homeostasis and adipogenesis. Our aim was to characterize the TCF7L2 mRNA expression and regulation in human adipose tissue. We quantified TCF7L2 mRNA levels in cultured human adipocytes and in biopsies from visceral (VAT) and subcutaneous (SAT) adipose tissue from 38 obese non-diabetic subjects, using real-time PCR. The influence of haplotype and clinical traits on TCF7L2 mRNA levels were investigated. In vitro, insulin decreased TCF7L2 mRNA expression. This effect was attenuated in cells incubated with the free fatty acids palmitate or oleate. In vivo, we found significantly higher expression in SAT from more insulin resistant subjects. No correlations between TCF7L2 mRNA expression and obesity measures were observed. TCF7L2 expression was higher in VAT than in SAT and when stratifying for haplotype, this difference was seen in HapA carriers but not in non-HapA carriers. In conclusion, TCF7L2 mRNA levels in adipocytes are decreased by insulin and seem to increase in insulin resistant subjects and in HapA carriers.
  •  
49.
  • Ahmad, Shafqat, et al. (författare)
  • Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia.
  • 2012
  • Ingår i: Diabetic Medicine: A journal of the British Diabetic Association. - : Wiley. - 1464-5491 .- 0742-3071. ; 29:10, s. 377-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Skeletal muscle is a major metabolic organ and plays important roles in glucose metabolism, insulin sensitivity and insulin action. Muscle telomere length reflects the myocyte's exposure to harmful environmental factors. Leukocyte telomere length is considered a marker of muscle telomere length and is used in epidemiologic studies to assess associations with ageing-related diseases where muscle physiology is important. However, the extent to which leucocyte and muscle telomere length are correlated is unknown, as are their relative correlations with glucose and insulin concentrations. The purpose of this study was to determine the extent of these relationships. Methods: Leucocyte and muscle telomere length were measured by quantitative real-time polymerase chain reaction in participants from the Malmö Exercise Intervention (n = 27) and the Prevalence, Prediction and Prevention of Diabetes-Botnia studies (n = 31). Participants in both studies were free from Type 2 diabetes. We assessed the association between leucocyte telomere length, muscle telomere length and metabolic traits using Spearmen correlations and multivariate linear regression. Bland-Altman analysis was used to assess agreement between leucocyte and muscle telomere length. Results: In age-, study-, diabetes family history- and sex-adjusted models, leucocyte and muscle telomere length were positively correlated (r = 0.39, 95% CI 0.15-0.59). Leucocyte telomere length was inversely associated with 2-h glucose concentrations (r = -0.58, 95% CI -1.0 to -0.16), but there was no correlation between muscle telomere length and 2-h glucose concentrations (r = 0.05, 95% CI -0.35 to 0.46) or between leucocyte or muscle telomere length with other metabolic traits. Conclusions: In summary, the current study supports the use of leucocyte telomere length as a proxy for muscle telomere length in epidemiological studies of Type 2 diabetes aetiology.
  •  
50.
  • Ahuja, Vasudha, et al. (författare)
  • Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults : A Meta-analysis
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:4, s. 1062-1069
  • Forskningsöversikt (refereegranskat)abstract
    • OBJECTIVE: One-hour plasma glucose (1-h PG) during the oral glucose tolerance test (OGTT) is an accurate predictor of type 2 diabetes. We performed a meta-analysis to determine the optimum cutoff of 1-h PG for detection of type 2 diabetes using 2-h PG as the gold standard. RESEARCH DESIGN AND METHODS: We included 15 studies with 35,551 participants from multiple ethnic groups (53.8% Caucasian) and 2,705 newly detected cases of diabetes based on 2-h PG during OGTT. We excluded cases identified only by elevated fasting plasma glucose and/or HbA1c. We determined the optimal 1-h PG threshold and its accuracy at this cutoff for detection of diabetes (2-h PG ≥11.1 mmol/L) using a mixed linear effects regression model with different weights to sensitivity/specificity (2/3, 1/2, and 1/3). RESULTS: Three cutoffs of 1-h PG, at 10.6 mmol/L, 11.6 mmol/L, and 12.5 mmol/L, had sensitivities of 0.95, 0.92, and 0.87 and specificities of 0.86, 0.91, and 0.94 at weights 2/3, 1/2, and 1/3, respectively. The cutoff of 11.6 mmol/L (95% CI 10.6, 12.6) had a sensitivity of 0.92 (0.87, 0.95), specificity of 0.91 (0.88, 0.93), area under the curve 0.939 (95% confidence region for sensitivity at a given specificity: 0.904, 0.946), and a positive predictive value of 45%. CONCLUSIONS: The 1-h PG of ≥11.6 mmol/L during OGTT has a good sensitivity and specificity for detecting type 2 diabetes. Prescreening with a diabetes-specific risk calculator to identify high-risk individuals is suggested to decrease the proportion of false-positive cases. Studies including other ethnic groups and assessing complication risk are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 678
Typ av publikation
tidskriftsartikel (618)
konferensbidrag (36)
forskningsöversikt (19)
bokkapitel (4)
annan publikation (1)
Typ av innehåll
refereegranskat (667)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Groop, Leif (663)
Tuomi, Tiinamaija (137)
Lyssenko, Valeriya (130)
Almgren, Peter (99)
Ahlqvist, Emma (79)
McCarthy, Mark I (75)
visa fler...
Melander, Olle (74)
Orho-Melander, Marju (74)
Isomaa, Bo (61)
Boehnke, Michael (59)
Laakso, Markku (56)
Hansson, Ola (53)
Tuomilehto, Jaakko (52)
Ling, Charlotte (50)
Salomaa, Veikko (48)
Altshuler, David (46)
Wareham, Nicholas J. (45)
Nilsson, Peter (44)
Mohlke, Karen L (43)
Kuusisto, Johanna (42)
Lindgren, Cecilia M. (42)
Hansen, Torben (40)
Prokopenko, Inga (40)
Lind, Lars (39)
Prasad, Rashmi B. (39)
Jackson, Anne U. (39)
Ladenvall, Claes (38)
Pedersen, Oluf (38)
Langenberg, Claudia (38)
Palmer, Colin N. A. (38)
Collins, Francis S. (38)
Ingelsson, Erik (37)
Stefansson, Kari (37)
Franks, Paul W. (36)
Gieger, Christian (36)
Barroso, Ines (35)
Grallert, Harald (35)
Thorleifsson, Gudmar (34)
Thorsteinsdottir, Un ... (34)
Loos, Ruth J F (34)
Frayling, Timothy M (34)
Tuomi, T. (33)
Ridderstråle, Martin (33)
Froguel, Philippe (33)
Hirschhorn, Joel N. (33)
Vaag, Allan (31)
Fadista, Joao (30)
Hattersley, Andrew T (30)
Mahajan, Anubha (30)
Voight, Benjamin F. (30)
visa färre...
Lärosäte
Lunds universitet (666)
Karolinska Institutet (104)
Uppsala universitet (91)
Göteborgs universitet (57)
Umeå universitet (55)
Stockholms universitet (6)
visa fler...
Linköpings universitet (6)
Mittuniversitetet (6)
Chalmers tekniska högskola (4)
Örebro universitet (3)
Malmö universitet (3)
Högskolan Dalarna (3)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Högskolan i Gävle (1)
Handelshögskolan i Stockholm (1)
visa färre...
Språk
Engelska (670)
Svenska (4)
Finska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (668)
Naturvetenskap (22)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy