SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groop Per Henrik) "

Sökning: WFRF:(Groop Per Henrik)

  • Resultat 1-38 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
2.
  • Ahluwalia, Tarunveer S., et al. (författare)
  • A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes : results from an exome-wide association study of albuminuria
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:2, s. 292-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Identifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants. Methods: We performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included. Results: We identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, β = 0.27, p = 1.3 × 10−11) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (pinteraction = 7.0 × 10−4, β with diabetes = 0.69, β without diabetes = 0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (pBonferroni < 2.7 × 10−6). Conclusions/interpretation: The current study identifies a rare coding variant in the CUBN locus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. The findings provide new insights into the genetic architecture of albuminuria and highlight target genes and pathways for the prevention of diabetes-related kidney disease.
  •  
3.
  • Andersen, Mette K., et al. (författare)
  • Latent Autoimmune Diabetes in Adults Differs Genetically From Classical Type 1 Diabetes Diagnosed After the Age of 35 Years
  • 2010
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 33:9, s. 2062-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE- We studied differences between patients with latent autoimmune diabetes in adults (LADA), type 2 diabetes, and classical type 1 diabetes diagnosed after age 35 years. RESEARCH DESIGN AND METHODS- Polymorphisms in HLA-DQB1, INS, PTPN22, and CTLA4 were genotyped in patients with LADA (n = 213), type 1 diabetes diagnosed at >35 years of age (T1D(>35y); n = 257) or <20 years of age (T1D(<20y); n = 158), and type 2 diabetes. RESULTS- Although patients with LADA had an increased frequency of HLA-DQB1 and PTPN22 risk genotypes and alleles compared with type 2 diabetic subjects, the frequency was significantly lower compared with T1D(>35y) patients. Genotype frequencies, measures of insulin secretion, and metabolic traits within LADA differed according to GAD antibody (GADA) quartiles, but even the highest quartile differed from type 1 diabetes. Having two or more risk genotypes was associated with lower C-peptide concentrations in LADA. CONCLUSIONS- LADA patients differed genetically and phenotypically from both T1D(>35y) and type 2 diabetic patients in a manner dependent on GADA levels.
  •  
4.
  • Andersen, Mette, et al. (författare)
  • Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 57:9, s. 1859-1868
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Latent autoimmune diabetes in adults (LADA) is phenotypically a hybrid of type 1 and type 2 diabetes. Genetically LADA is poorly characterised but does share genetic predisposition with type 1 diabetes. We aimed to improve the genetic characterisation of LADA and hypothesised that type 2 diabetes-associated gene variants also predispose to LADA, and that the associations would be strongest in LADA patients with low levels of GAD autoantibodies (GADA). Methods We assessed 41 type 2 diabetes-associated gene variants in Finnish (phase I) and Swedish (phase II) patients with LADA (n=911) or type 1 diabetes (n=406), all diagnosed after the age of 35 years, as well as in non-diabetic control individuals 40 years or older (n=4,002). Results Variants in the ZMIZ1 (rs12571751, p=4.1 x 10(-5)) and TCF7L2 (rs7903146, p=5.8 x 10(-4)) loci were strongly associated with LADA. Variants in the KCNQ1 (rs2237895, p=0.0012), HHEX (rs1111875, p=0.0024 in Finns) and MTNR1B (rs10830963, p=0.0039) loci showed the strongest association in patients with low GADA, supporting the hypothesis that the disease in these patients is more like type 2 diabetes. In contrast, variants in the KLHDC5 (rs10842994, p=9.5 x 10(-4) in Finns), TP53INP1 (rs896854, p=0.005), CDKAL1 (rs7756992, p=7.0 x 10(-4); rs7754840, p=8.8 x 10(-4)) and PROX1 (rs340874, p=0.003) loci showed the strongest association in patients with high GADA. For type 1 diabetes, a strong association was seen for MTNR1B (rs10830963, p=3.2 x 10(-6)) and HNF1A (rs2650000, p=0.0012). Conclusions/interpretation LADA and adult-onset type 1 diabetes share genetic risk variants with type 2 diabetes, supporting the idea of a hybrid form of diabetes and distinguishing them from patients with classical young-onset type 1 diabetes.
  •  
5.
  • Barreiro, Karina, et al. (författare)
  • Urinary extracellular vesicles : Assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research
  • 2021
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.
  •  
6.
  • Berglund, Lisa, et al. (författare)
  • Glucose-Dependent Insulinotropic Polypeptide (GIP) Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB.
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:1, s. 239-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with extrapancreatic effects beyond glycemic control. Here we demonstrate unexpected effects of GIP signaling in the vasculature. GIP induces the expression of the pro-atherogenic cytokine osteopontin (OPN) in mouse arteries, via local release of endothelin-1 (ET-1) and activation of cAMP response element binding protein (CREB). Infusion of GIP increases plasma OPN levels in healthy individuals. Plasma ET-1 and OPN levels are positively correlated in patients with critical limb ischemia. Fasting GIP levels are higher in individuals with a history of cardiovascular disease (myocardial infarction, stroke) when compared to controls. GIP receptor (GIPR) and OPN mRNA levels are higher in carotid endarterectomies from patients with symptoms (stroke, transient ischemic attacks, amaurosis fugax) than in asymptomatic patients; and expression associates to parameters characteristic of unstable and inflammatory plaques (increased lipid accumulation, macrophage infiltration and reduced smooth muscle cell content). While GIPR expression is predominantly endothelial in healthy arteries from human, mouse, rat and pig; remarkable up-regulation is observed in endothelial and smooth muscle cells upon culture conditions yielding a "vascular disease-like" phenotype. Moreover, a common variant rs10423928 in the GIPR gene associated with increased risk of stroke in type 2 diabetes patients.
  •  
7.
  • Dwivedi, Om Prakash, et al. (författare)
  • Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease
  • 2023
  • Ingår i: iScience. - 2589-0042. ; 26:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) are a largely unexplored source of kidney-derived mRNAs with potential to serve as a liquid kidney biopsy. We assessed ∼200 uEV mRNA samples from clinical studies by genome-wide sequencing to discover mechanisms and candidate biomarkers of diabetic kidney disease (DKD) in Type 1 diabetes (T1D) with replication in Type 1 and 2 diabetes. Sequencing reproducibly showed >10,000 mRNAs with similarity to kidney transcriptome. T1D DKD groups showed 13 upregulated genes prevalently expressed in proximal tubules, correlated with hyperglycemia and involved in cellular/oxidative stress homeostasis. We used six of them (GPX3, NOX4, MSRB, MSRA, HRSP12 and CRYAB) to construct a transcriptional “stress score” that reflected long-term decline of kidney function and could even identify normoalbuminuric individuals showing early decline. We thus provide workflow and web-resource for studying uEV transcriptomes in clinical urine samples and stress-linked DKD markers as potential early non-invasive biomarkers or drug targets.
  •  
8.
  •  
9.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
10.
  • Meng, Weihua, et al. (författare)
  • A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes
  • 2018
  • Ingår i: Acta Ophthalmologica. - : Wiley. - 1755-375X. ; 96:7, s. 811-819
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Diabetic retinopathy is the most common eye complication in patients with diabetes. The purpose of this study is to identify genetic factors contributing to severe diabetic retinopathy. Methods: A genome-wide association approach was applied. In the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) datasets, cases of severe diabetic retinopathy were defined as type 2 diabetic patients who were ever graded as having severe background retinopathy (Level R3) or proliferative retinopathy (Level R4) in at least one eye according to the Scottish Diabetic Retinopathy Grading Scheme or who were once treated by laser photocoagulation. Controls were diabetic individuals whose longitudinal retinopathy screening records were either normal (Level R0) or only with mild background retinopathy (Level R1) in both eyes. Significant Single Nucleotide Polymorphisms (SNPs) were taken forward for meta-analysis using multiple Caucasian cohorts. Results: Five hundred and sixty cases of type 2 diabetes with severe diabetic retinopathy and 4,106 controls were identified in the GoDARTS cohort. We revealed that rs3913535 in the NADPH Oxidase 4 (NOX4) gene reached a p value of 4.05 × 10−9. Two nearby SNPs, rs10765219 and rs11018670 also showed promising p values (p values = 7.41 × 10−8 and 1.23 × 10−8, respectively). In the meta-analysis using multiple Caucasian cohorts (excluding GoDARTS), rs10765219 and rs11018670 showed associations for diabetic retinopathy (p = 0.003 and 0.007, respectively), while the p value of rs3913535 was not significant (p = 0.429). Conclusion: This genome-wide association study of severe diabetic retinopathy suggests new evidence for the involvement of the NOX4 gene.
  •  
11.
  • Möllsten, Anna, et al. (författare)
  • A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women.
  • 2011
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier. - 1096-7192 .- 1096-7206. ; 103:1, s. 66-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The etiology of diabetic nephropathy depends partly on genetic factors. Elevated systemic and intraglomerular blood pressure and glomerular filtration rate, partly regulated by the renin–angiotensin system, increase the risk of diabetic nephropathy. Methods The present case–control study investigated the association of the rs5186 polymorphism, in the angiotensin II type 1 receptor gene (AGTR1), with diabetic nephropathy. The study included 3561 patients with type 1 diabetes from Denmark, Finland, France and Sweden. Microalbuminuria was defined as albumin excretion rate (AER) ≥ 20 to < 200 μg/min or albumin concentration ≥ 30 to < 300 mg/l (n = 707), macroalbuminuria was defined as AER ≥ 200 μg/min or ≥ 300 mg/l (n = 1546), and patients with renal replacement therapy were also included in this group. The controls had > 15 years diabetes duration, AER < 20 μg/min or < 30 mg/l, and no antihypertensive treatment (n = 1308). Results AA genotype of the rs5186 polymorphism significantly increased the risk of diabetic nephropathy in male patients, OR = 1.27 (95% CI = 1.02–1.58), P = 0.03, adjusted for age at diabetes onset, HbA1c, diabetes duration, smoking and country of origin. Among the women, there were no significant associations between rs5186 and diabetic nephropathy, OR = 0.89 (0.71–1.11), P = 0.30. Conclusion We conclude that the AGTR1 gene may be associated with increased risk of diabetic nephropathy in men with type 1 diabetes.
  •  
12.
  • Ottosson Laakso, Emilia, et al. (författare)
  • Influence of Familial Renal Glycosuria Due to Mutations in the SLC5A2 Gene on Changes in Glucose Tolerance over Time.
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial renal glycosuria is an inherited disorder resulting in glucose excretion in the urine despite normal blood glucose concentrations. It is most commonly due to mutations in the SLC5A2 gene coding for the glucose transporter SGLT2 in the proximal tubule. Several drugs have been introduced as means to lower glucose in patients with type 2 diabetes targeting SGLT2 resulting in renal glycosuria, but no studies have addressed the potential effects of decreased renal glucose reabsorption and chronic glycosuria on the prevention of glucose intolerance. Here we present data on a large pedigree with renal glycosuria due to two mutations (c.300-303+2del and p.A343V) in the SLC5A2 gene. The mutations, which in vitro affected glucose transport in a cell line model, and the ensuing glycosuria were not associated with better glycemic control during a follow-up period of more than 10 years. One individual, who was compound heterozygous for mutations in the SLC5A2 gene suffered from severe urogenital candida infections and postprandial hypoglycemia. In conclusion, in this family with familial glycosuria we did not find any evidence that chronic loss of glucose in the urine would protect from deterioration of the glucose tolerance over time.
  •  
13.
  • Ronnback, Mats, et al. (författare)
  • Complex Relationship Between Blood Pressure and Mortality in Type 2 Diabetic Patients. A Follow-Up of the Botnia Study.
  • 2006
  • Ingår i: Hypertension. - 1524-4563. ; 47:Dec 27, s. 168-173
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of hypertension aggravates the high cardiovascular risk in type 2 diabetic patients. Pulse pressure is a marker of arterial stiffness and constitutes a risk factor for cardiovascular mortality. This study examines the relationship between different blood pressure indices and mortality in a cohort of type 2 diabetic patients. A total of 1294 type 2 diabetic patients with a median age of 69.1 years participated in the Botnia Study from 1990 to 1997. In 2004, after a median follow-up of 9.5 years, data on mortality was collected from the national population registry and hospital records. Systolic and diastolic blood pressure correlated negatively with mortality after adjustment for other risk factors. The association between low systolic and diastolic blood pressure and mortality was pronounced in patients with previous cardiovascular disease. A U-shaped association between pulse pressure and mortality was observed in elderly patients. These observations could be linked to arterial stiffness and heart failure. Low blood pressure in high-risk patients is likely to be a marker of poor health rather than the cause of mortality. The results suggest that the role of blood pressure as a risk marker in elderly type 2 diabetic patients with cardiovascular disease needs to be reevaluated.
  •  
14.
  • Sandholm, Niina, et al. (författare)
  • Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes
  • 2014
  • Ingår i: Diabetologia. - Berlin Heidelberg : Springer-Verlag. - 0012-186X .- 1432-0428. ; 57:6, s. 1143-1153
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: An abnormal urinary albumin excretion rate (AER) is often the first clinically detectable manifestation of diabetic nephropathy. Our aim was to estimate the heritability and to detect genetic variation associated with elevated AER in patients with type 1 diabetes.METHODS: The discovery phase genome-wide association study (GWAS) included 1,925 patients with type 1diabetes and with data on 24 h AER. AER was analysed as a continuous trait and the analysis was stratified by the use of antihypertensive medication. Signals with a p value <10(-4) were followed up in 3,750 additional patients withtype 1 diabetes from seven studies.RESULTS: The narrow-sense heritability, captured with our genotyping platform, was estimated to explain 27.3% of the total AER variability, and 37.6% after adjustment for covariates. In the discovery stage, five single nucleotide polymorphisms in the GLRA3 gene were strongly associated with albuminuria (p < 5 × 10(-8)). In the replication group, a nominally significant association (p = 0.035) was observed between albuminuria and rs1564939 in GLRA3, but this was in the opposite direction. Sequencing of the surrounding genetic region in 48 Finnish and 48 UK individuals supported the possibility that population-specific rare variants contribute to the synthetic associationobserved at the common variants in GLRA3. The strongest replication (p = 0.026) was obtained for rs2410601 between the PSD3 and SH2D4A genes. Pathway analysis highlighted natural killer cell mediated immunity processes.CONCLUSIONS/INTERPRETATION: This study suggests novel pathways and molecular mechanisms for the pathogenesis of albuminuria in type 1 diabetes.
  •  
15.
  • Sandholm, Niina, et al. (författare)
  • Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease
  • 2022
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 65:9, s. 1495-1509
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. Methods: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. Results: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10−9; although not withstanding correction for multiple testing, p>9.3×10−9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN–RESP18, GPR158, INIP–SNX30, LSM14A and MFF; p<2.7×10−6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10−6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10−11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10−8] and negatively with tubulointerstitial fibrosis [p=2.0×10−9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10−16], and SNX30 expression correlated positively with eGFR [p=5.8×10−14] and negatively with fibrosis [p<2.0×10−16]). Conclusions/interpretation: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. Data availability: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages (https://t1d.hugeamp.org/downloads.html; https://t2d.hugeamp.org/downloads.html; https://hugeamp.org/downloads.html). Graphical abstract: [Figure not available: see fulltext.]
  •  
16.
  • Sandholm, Niina, et al. (författare)
  • The genetic landscape of renal complications in type 1 diabetes
  • 2017
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673. ; 28:2, s. 557-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4310-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associatedvariants.Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2310-5) and the risk of type 2 diabetes (P=6.1310-4) associated with the risk of diabetic kidney disease.Wealso found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1310-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0310-6), and pentose and glucuronate interconversions (P=3.0310-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
  •  
17.
  • Simonsen, Johan R, et al. (författare)
  • Genetic factors affect the susceptibility to bacterial infections in diabetes
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes increases the risk of bacterial infections. We investigated whether common genetic variants associate with infection susceptibility in Finnish diabetic individuals. We performed genome-wide association studies and pathway analysis for bacterial infection frequency in Finnish adult diabetic individuals (FinnDiane Study; N = 5092, Diabetes Registry Vaasa; N = 4247) using national register data on antibiotic prescription purchases. Replication analyses were performed in a Swedish diabetic population (ANDIS; N = 9602) and in a Finnish non-diabetic population (FinnGen; N = 159,166). Genome-wide data indicated moderate but significant narrow-sense heritability for infection susceptibility (h2 = 16%, P = 0.02). Variants on chromosome 2 were associated with reduced infection susceptibility (rs62192851, P = 2.23 × 10-7). Homozygotic carriers of the rs62192851 effect allele (N = 44) had a 37% lower median annual antibiotic purchase rate, compared to homozygotic carriers of the reference allele (N = 4231): 0.38 [IQR 0.22-0.90] and 0.60 [0.30-1.20] respectively, P = 0.01). Variants rs6727834 and rs10188087, in linkage disequilibrium with rs62192851, replicated in the FinnGen-cohort (P < 0.05), but no variants replicated in the ANDIS-cohort. Pathway analysis suggested the IRAK1 mediated NF-κB activation through IKK complex recruitment-pathway to be a mediator of the phenotype. Common genetic variants on chromosome 2 may associate with reduced risk of bacterial infections in Finnish individuals with diabetes.
  •  
18.
  • Skyler, Jay S, et al. (författare)
  • Differentiation of diabetes by pathophysiology, natural history, and prognosis
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:2, s. 241-255
  • Forskningsöversikt (refereegranskat)abstract
    • The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, "The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis" on 10-12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment.
  •  
19.
  • van Zuydam, Natalie, et al. (författare)
  • Genome-Wide Association Study of Peripheral Artery Disease
  • 2021
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 2574-8300. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status. Methods: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status. Results: We identified 5 genome-wide significant (P-association <= 5x10(-8)) associations with PAD in 449 548 (N-cases=12 086) individuals of European ancestry near LPA (lipoprotein [a]), CDKN2BAS1 (CDKN2B antisense RNA 1), SH2B3 (SH2B adaptor protein 3) - PTPN11 (protein tyrosine phosphatase non-receptor type 11), HDAC9 (histone deacetylase 9), and CHRNA3 (cholinergic receptor nicotinic alpha 3 subunit) loci (which overlapped previously reported associations). Meta-analysis with variants previously associated with PAD showed that 18 of 19 published variants remained genome-wide significant. In individuals with diabetes, rs116405693 at the CCSER1 (coiled-coil serine rich protein 1) locus was associated with PAD (odds ratio [95% CI], 1.51 [1.32-1.74], P-diabetes=2.5x10(-9), P-interactionwithdiabetes=5.3x10(-7)). Furthermore, in smokers, rs12910984 at the CHRNA3 locus was associated with PAD (odds ratio [95% CI], 1.15 [1.11-1.19], P-smokers=9.3x10(-10), P-interactionwithsmoking=3.9x10(-5)). Conclusions: Our analyses confirm the published genetic associations with PAD and identify novel variants that may influence susceptibility to PAD in the context of diabetes or smoking status.
  •  
20.
  •  
21.
  • Barreiro, Karina, et al. (författare)
  • Capturing the Kidney Transcriptome by Urinary Extracellular Vesicles—From Pre-Analytical Obstacles to Biomarker Research
  • 2023
  • Ingår i: Genes. - 2073-4425. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)—linked miRNAs or kidney—linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at −20 °C vs. −80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs—analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.
  •  
22.
  • Berndt, Sonja I., et al. (författare)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Tidskriftsartikel (refereegranskat)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
23.
  • Eriksson, M. I., et al. (författare)
  • Haptoglobin genotype and its relation to asymptomatic cerebral small-vessel disease in type 1 diabetes
  • 2023
  • Ingår i: Acta Diabetologica. - : Springer Science and Business Media LLC. - 0940-5429 .- 1432-5233. ; 60:6, s. 749-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Cerebral small-vessel disease (SVD) is prevalent in type 1 diabetes and has been associated with the haptoglobin variant allele Hp1. Contrarily, the Hp2-allele has been linked to cardiovascular disease and the role of haptoglobin-genotype in asymptomatic SVD is unknown. We, therefore, aimed to evaluate the alleles’ association with SVD. Methods: This cross-sectional study included 179 neurologically asymptomatic adults with type 1 diabetes (women 53%, mean age 39 ± 7years, diabetes duration 23 ± 10years, HbA1c 8.1 ± 3.2% [65 ± 12mmol/mol]). Examinations included genotyping (genotypes Hp1-1, Hp2-1, Hp2-2) by polymerase chain reaction, clinical investigation, and magnetic resonance brain images assessed for SVD manifestations (white matter hyperintensities, cerebral microbleeds, and lacunar infarcts). Results: SVD prevalence was 34.6%. Haptoglobin genotype frequencies were 15.6% (Hp1-1), 43.6% (Hp1-2), and 40.8% (Hp2-2). Only diastolic blood pressure differed between the genotypes Hp1-1, Hp1-2, and Hp2-2 (81 [74–83], 75 [70–80], and 75 [72–81] mmHg, p = 0.019). Haptoglobin genotype frequencies by presence versus absence of SVD were 16.1%; 46.8%; 37.1% versus 15.4%; 41.9%; 42.7% (p = 0.758). Minor allele frequencies were 39.5% versus 36.3% (p = 0.553). Hp1 homozygotes and Hp2 carriers displayed equal proportions of SVD (35.7% vs 34.4%, p > 0.999) and SVD manifestations (white matter hyperintensities 14.3% vs 17.9%, p = 0.790; microbleeds 25.0% vs 21.9%, p = 0.904; lacunar infarcts 0% vs 3.6%, p > 0.999). Hp1-1 was not associated with SVD (OR 1.19, 95% CI 0.46–2.94, p = 0.712) when adjusting for age, blood pressure, and diabetic retinopathy. Conclusions: Although the SVD prevalence was high, we detected no significant association between SVD and haptoglobin-genotype.
  •  
24.
  • Groop, Per-Henrik, et al. (författare)
  • Effect of dapagliflozin as an adjunct to insulin over 52 weeks in individuals with type 1 diabetes : post-hoc renal analysis of the DEPICT randomised controlled trials
  • 2020
  • Ingår i: The Lancet Diabetes and Endocrinology. - : Elsevier. - 2213-8587 .- 2213-8595. ; 8:10, s. 845-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The DEPICT-1 and DEPICT-2 studies showed that dapagliflozin as an adjunct to insulin in individuals with inadequately controlled type 1 diabetes improved glycaemic control and bodyweight, without increase in risk of hypoglycaemia. We aimed to determine the effect of dapagliflozin on urinary albumin-to-creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) using pooled data from the DEPICT studies.Methods: In this post-hoc analysis, we used data pooled from both DEPICT studies (DEPICT-1 ran from Nov 11, 2014, to Aug 25, 2017; DEPICT-2 ran from July 8, 2015, to April 18, 2018), in which participants were aged 18-75 years, with inadequately controlled type 1 diabetes and with a baseline UACR of at least 30 mg/g. In the DEPICT studies, participants were randomly assigned (1:1:1) to receive dapagliflozin (5 mg or 10 mg) or placebo all plus insulin, for 24 weeks, with a 28-week long-term extension (ie, 52 weeks in total). In this post-hoc analysis, we assessed the percentage change from baseline in UACR and in eGFR, up to 52 weeks. UACR, eGFR, and safety were assessed in all eligible participants who had received at least one dose of study drug. HbA 1c, bodyweight, and systolic blood pressure were assessed in all participants who received at least one dose of study drug during the first 24-week period, and who had a baseline and any post-baseline assessment for that parameter. The DEPICT trials were registered with ClinicalTrials.gov, NCT02268214 (DEPICT-1), NCT02460978 (DEPICT-2), and are now complete.Results: 251 participants with albuminuria at baseline were included in this post-hoc analysis; of whom 80 (32%) had been randomly assigned to dapagliflozin 5 mg, 84 (33%) to dapagliflozin 10 mg, and 87 (35%) to placebo. Compared with placebo, treatment with both dapagliflozin doses improved UACR over 52 weeks. At week 52, mean difference in change from baseline versus placebo in UACR was -13.3% (95% CI -37.2 to 19.8) for dapagliflozin 5 mg and -31.1% (-49.9 to -5.2) for dapagliflozin 10 mg. No notable change from baseline was seen in eGFR, with a mean difference in change from baseline versus placebo of 3.27 mL/min per 1.73 m(2) (95% CI -0.92 to 7.45) for dapagliflozin 5 mg and 2.12 mL/min per 1.73 m(2) (-2.03 to 6.27) for dapagliflozin 10 mg. Similar proportions of participants in each treatment group had adverse events and serious adverse events, including hypoglycaemia and diabetic ketoacidosis; no new safety signals were identified in this population.Interpretation: Treatment with dapagliflozin resulted in UACR reduction, which might provide renoprotective benefits in individuals with type 1 diabetes and albuminuria. Dedicated prospective studies are needed to confirm these findings as prespecified endpoints.
  •  
25.
  • Harsunen, Minna, et al. (författare)
  • Residual insulin secretion in individuals with type 1 diabetes in Finland : longitudinal and cross-sectional analyses
  • 2023
  • Ingår i: The Lancet Diabetes and Endocrinology. - 2213-8587. ; 11:7, s. 465-473
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Contrary to the presumption that type 1 diabetes leads to an absolute insulin deficiency, many individuals with type 1 diabetes have circulating C-peptide years after the diagnosis. We studied factors affecting random serum C-peptide concentration in individuals with type 1 diabetes and the association with diabetic complications. Methods: Our longitudinal analysis included individuals newly diagnosed with type 1 diabetes from Helsinki University Hospital (Helsinki, Finland) with repeated random serum C-peptide and concomitant glucose measurements from within 3 months of diagnosis and at least once later. The long-term cross-sectional analysis included data from participants from 57 centres in Finland who had type 1 diabetes diagnosed after 5 years of age, initiation of insulin treatment within 1 year from diagnosis, and a C-peptide concentration of less than 1·0 nmol/L (FinnDiane study) and patients with type 1 diabetes from the DIREVA study. We tested the association of random serum C-peptide concentrations and polygenic risk scores with one-way ANOVA, and association of random serum C-peptide concentrations, polygenic risk scores, and clinical factors with logistic regression. Findings: The longitudinal analysis included 847 participants younger than 16 years and 110 aged 16 years or older. In the longitudinal analysis, age at diagnosis strongly correlated with the decline in C-peptide secretion. The cross-sectional analysis included 3984 participants from FinnDiane and 645 from DIREVA. In the cross-sectional analysis, at a median duration of 21·6 years (IQR 12·5−31·2), 776 (19·4%) of 3984 FinnDiane participants had residual random serum C-peptide secretion (>0·02 nmol/L), which was associated with lower type 1 diabetes polygenic risk compared with participants without random serum C-peptide (p<0·0001). Random serum C-peptide was inversely associated with hypertension, HbA1c, and cholesterol, but also independently with microvascular complications (adjusted OR 0·61 [95% CI 0·38–0·96], p=0·033, for nephropathy; 0·55 [0·34–0·89], p=0·014, for retinopathy). Interpretation: Although children with multiple autoantibodies and HLA risk genotypes progressed to absolute insulin deficiency rapidly, many adolescents and adults had residual random serum C-peptide decades after the diagnosis. Polygenic risk of type 1 and type 2 diabetes affected residual random serum C-peptide. Even low residual random serum C-peptide concentrations seemed to be associated with a beneficial complications profile. Funding: Folkhälsan Research Foundation; Academy of Finland; University of Helsinki and Helsinki University Hospital; Medical Society of Finland; the Sigrid Juselius Foundation; the “Liv and Hälsa“ Society; Novo Nordisk Foundation; and State Research Funding via the Helsinki University Hospital, the Vasa Hospital District, Turku University Hospital, Vasa Central Hospital, Jakobstadsnejdens Heart Foundation, and the Medical Foundation of Vaasa.
  •  
26.
  • Humphreys, Keith, et al. (författare)
  • The Genetic Structure of the Swedish Population
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:8, s. e22547-
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F(st)) indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions.
  •  
27.
  • Lahermo, P, et al. (författare)
  • A quality assessment survey of SNP genotyping laboratories
  • 2006
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 27:7, s. 711-714
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • To survey the quality of SNP genotyping, a joint Nordic quality assessment (QA) round was organized between 11 laboratories in the Nordic and Baltic countries. The QA round involved blinded genotyping of 47 DNA samples for 18 or six randomly selected SNPs. The methods used by the participating laboratories included all major platforms for small- to medium-size SNP genotyping. The laboratories used their standard procedures for SNP assay design, genotyping, and quality control. Based on the joint results from all laboratories, a consensus genotype for each DNA sample and SNP was determined by the coordinator of the survey, and the results from each laboratory were compared to this genotype. The overall genotyping accuracy achieved in the survey was excellent. Six laboratories delivered genotype data that were in full agreement with the consensus genotype. The average accuracy per SNP varied from 99.1 to 100% between the laboratories, and it was frequently 100% for the majority of the assays for which SNP genotypes were reported. Lessons from the survey are that special attention should be given to the quality of the DNA samples prior to genotyping, and that a conservative approach for calling the genotypes should be used to achieve a high accuracy.
  •  
28.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
29.
  • Leu, Monica, et al. (författare)
  • NordicDB : a Nordic pool and portal for genome-wide control data
  • 2010
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 18:12, s. 1322-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from similar to 5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW-SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries. European Journal of Human Genetics (2010) 18, 1322-1326; doi: 10.1038/ejhg.2010.112; published online 28 July 2010
  •  
30.
  • Llaurado, Gemma, et al. (författare)
  • Liver Fat Content and Hepatic Insulin Sensitivity in Overweight Patients With Type 1 Diabetes
  • 2015
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 100:2, s. 607-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Patients with type 1 diabetes mellitus (T1DM) lack the portal/peripheral insulin gradient, which might diminish insulin stimulation of hepatic lipogenesis and protect against development of nonalcoholic fatty liver disease (NAFLD). We compared liver fat content and insulin sensitivity of hepatic glucose production and lipolysis between overweight T1DM patients and nondiabetic subjects. Materials and Methods: We compared 32 overweight adult T1DM patients and 32 nondiabetic subjects matched for age, body mass index (BMI), and gender. Liver fat content was measured using proton magnetic resonance spectroscopy (H-1-MRS), body composition by magnetic resonance imaging, and insulin sensitivity using the euglycemic-hyperinsulinemic clamp technique (insulin 0.4 mU/kg.min combined with infusion of D-[3-H-3] glucose). We also hypothesized that low liver fat might protect from obesity-associated increases in insulin requirements and, therefore, determined insulin requirements across BMI categories in 3164 T1DM patients. Results: Liver fat content was significantly lower in T1DM patients than in nondiabetic subjects (0.6% [25th-75th quartiles, 0.3%-1.1%] vs 9.0% [ 3.0%-18.0%]; P<.001). The endogenous rate of glucose production (R-a) during euglycemic hyperinsulinemia was significantly lower (0.4 [-0.7 to 0.8] mg/kg fat-free mass.min vs 0.9 [0.2-1.6] fat-free mass.min; P=.012) and the percent suppression of endogenous R-a by insulin was significantly greater (89% [78%-112%] vs 77% [50%-94%]; p=.009) in T1DM patients than in nondiabetic subjects. Serum nonesterified fatty acid concentrations during euglycemic hyperinsulinemia were significantly lower (78.5 [33.0-155.0] vs 306 [200.0-438.0] mu mol/L; P<.001) and the percent suppression of nonesterified fatty acids significantly higher (89.1% [78.6%-93.3%] vs 51.4% [36.5%-71.1%]; P<.001) in T1DM patients than in nondiabetic subjects. Insulin doses were similar across BMI categories. Conclusions: T1DM patients might be protected from steatosis and hepatic insulin resistance. Obesity may not increase insulin requirements in T1DM.
  •  
31.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
32.
  • Möllsten, Anna, et al. (författare)
  • A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:1, s. 265-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress has been suggested to contribute to the development of diabetic nephropathy. Manganese superoxide dismutase (MnSOD) protects the cells from oxidative damage by scavenging free radicals. The demand for antioxidants is increased by smoking, which could disturb the balance between antioxidants and radicals. The present study aimed to determine whether a valine/alanine polymorphism in MnSOD (V16A, rs4880), alone or in combination with smoking, can contribute to development of diabetic nephropathy in 1,510 Finnish and Swedish patients with type 1 diabetes. Overt diabetic nephropathy (n = 619) was defined as having an albumin excretion rate (AER) >200 microg/min or renal replacement therapy; incipient diabetic nephropathy was defined as having an AER of 20-200 microg/min (n = 336). The control subjects had diabetes duration of >or=20 years, without albuminuria (AER <20 microg/min) and without antihypertensive treatment (n = 555). In addition to male sex and elevated A1C, smoking was significantly associated with diabetic nephropathy (overt plus incipient), odds ratio (OR) 2.00 (95% CI 1.60-2.50). When controlling for age at onset, diabetes duration, A1C, smoking, and sex, the Val/Val genotype was associated with an increase in risk of diabetic nephropathy (1.32 [1.00-1.74], P = 0.049). When evaluating the combined effect of genotype and smoking, we used logistic regression with stratification according to smoking status and genotype. The high-risk group (ever smoking plus Val/Val genotype) had 2.52 times increased risk of diabetic nephropathy (95% CI 1.73-3.69) compared with the low-risk group, but no departure from additivity was found. Our results indicate that smoking and homozygosity for the MnSOD Val allele is associated with an increased risk of diabetic nephropathy, which supports the hypothesis that oxidative stress contributes to the development of diabetic nephropathy.
  •  
33.
  • Pirttiniemi, Anniina, et al. (författare)
  • Long-chain polyphosphates inhibit type I interferon signaling and augment LPS-induced cytokine secretion in human leukocytes.
  • 2023
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 0741-5400 .- 1938-3673. ; 114:3, s. 250-265
  • Tidskriftsartikel (refereegranskat)abstract
    • Inorganic polyphosphates are evolutionarily conserved bioactive phosphate polymers found as various chain lengths in all living organisms. In mammals, polyphosphates play a vital role in the regulation of cellular metabolism, coagulation, and inflammation. Long-chain polyphosphates are found along with endotoxins in pathogenic gram-negative bacteria and can participate in bacterial virulence. We aimed to investigate, whether exogenously administered polyphosphates modulate human leukocyte function in vitro by treating the cells with three different chain lengths of polyphosphates (P14, P100, and P700). The long-chain polyphosphates, P700, had a remarkable capacity to downregulate type I interferon signaling dose dependently in THP1-Dual cells while only a slight elevation could be observed in the NF-κB pathway with the highest dose of P700. P700 treatment decreased LPS-induced IFNβ transcription and secretion, STAT1 phosphorylation, and downregulated subsequent interferon stimulated gene expression in primary human peripheral blood mononuclear cells. P700 also augmented LPS-induced secretion of IL-1α, IL-1β, IL-4, IL-5, IL-10, and IFNγ. Furthermore, P700 has previously been reported to increase the phosphorylation of several intracellular signaling mediators, such as AKT, mTOR, ERK, p38, GSK3α/β, HSP27, and JNK pathway components, which was supported by our findings. Taken together, these observations demonstrate the extensive modulatory effects P700 has on cytokine signaling, and the inhibitory effects specifically targeted to type I interferon signaling in human leukocytes.
  •  
34.
  • Putaala, Jukka, et al. (författare)
  • Searching for Explanations for Cryptogenic Stroke in the Young : Revealing the Triggers, Causes, and Outcome (SECRETO): Rationale and design
  • 2017
  • Ingår i: European Stroke Journal. - : SAGE Publications. - 2396-9873 .- 2396-9881. ; 2:2, s. 116-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Worldwide, about 1.3 million annual ischaemic strokes (IS) occur in adults aged <50 years. Of these early-onset strokes, up to 50% can be regarded as cryptogenic or associated with conditions with poorly documented causality like patent foramen ovale and coagulopathies. Key hypotheses/aims: (1) Investigate transient triggers and clinical/sub-clinical chronic risk factors associated with cryptogenic IS in the young; (2) use cardiac imaging methods exceeding state-of-the-art to reveal novel sources for embolism; (3) search for covert thrombosis and haemostasis abnormalities; (4) discover new disease pathways using next-generation sequencing and RNA gene expression studies; (5) determine patient prognosis by use of phenotypic and genetic data; and (6) adapt systems medicine approach to investigate complex risk-factor interactions. Design: Searching for Explanations for Cryptogenic Stroke in the Young: Revealing the Etiology, Triggers, and Outcome (SECRETO; NCT01934725) is a prospective multi-centre case–control study enrolling patients aged 18–49 years hospitalised due to first-ever imaging-proven IS of undetermined etiology. Patients are examined according to a standardised protocol and followed up for 10 years. Patients are 1:1 age- and sex-matched to stroke-free controls. Key study elements include centralised reading of echocardiography, electrocardiography, and neurovascular imaging, as well as blood samples for genetic, gene-expression, thrombosis and haemostasis and biomarker analysis. We aim to have 600 patient–control pairs enrolled by the end of 2018. Summary: SECRETO is aiming to establish novel mechanisms and prognosis of cryptogenic IS in the young and will provide new directions for therapy development for these patients. First results are anticipated in 2019.
  •  
35.
  • Schnell, Oliver, et al. (författare)
  • CVOT Summit Report 2023 : new cardiovascular, kidney, and metabolic outcomes
  • 2024
  • Ingår i: Cardiovascular Diabetology. - 1475-2840. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5–6, 2024 (http://www.cvot.org).
  •  
36.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
37.
  • van der Kolk, Birgitta W., et al. (författare)
  • Molecular pathways behind acquired obesity : Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI
  • 2021
  • Ingår i: Cell Reports Medicine. - : Elsevier BV. - 2666-3791. ; 2:4, s. 100226-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcriptional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory pathways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle, glycolysis- and redox stress-related protein and metabolite levels remain higher. Furthermore, metabolomics analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dyslipidemia, suggesting that adipose tissue dominates in acquired obesity.
  •  
38.
  • Yang, Jian, et al. (författare)
  • FTO genotype is associated with phenotypic variability of body mass index
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 490:7419, s. 267-272
  • Tidskriftsartikel (refereegranskat)abstract
    • There is evidence across several species for genetic control of phenotypic variation of complex traits(1-4), such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using similar to 170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)(5-7), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of similar to 0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation(9,10). Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-38 av 38
Typ av publikation
tidskriftsartikel (37)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Groop, Per Henrik (29)
Groop, Leif (26)
Forsblom, Carol (16)
McCarthy, Mark I (11)
Tuomi, Tiinamaija (10)
Ahlqvist, Emma (10)
visa fler...
Sandholm, Niina (10)
Hall, Per (7)
Tuomilehto, Jaakko (7)
Strachan, David P (6)
van Duijn, Cornelia ... (6)
Mohlke, Karen L (6)
Ripatti, Samuli (6)
Willemsen, Gonneke (6)
Martin, Nicholas G. (6)
Kaprio, Jaakko (6)
Jarvelin, Marjo-Riit ... (6)
Wilson, James F. (6)
Rivadeneira, Fernand ... (6)
Salomaa, Veikko (5)
Perola, Markus (5)
Berndt, Sonja I (5)
Chanock, Stephen J (5)
Campbell, Harry (5)
Rudan, Igor (5)
Ohlsson, Claes, 1965 (5)
North, Kari E. (5)
Wareham, Nicholas J. (5)
Almgren, Peter (5)
Rossing, Peter (5)
Ridker, Paul M. (5)
Chasman, Daniel I. (5)
Boehnke, Michael (5)
Thorleifsson, Gudmar (5)
Thorsteinsdottir, Un ... (5)
Stefansson, Kari (5)
Abecasis, Goncalo R. (5)
Mangino, Massimo (5)
Wichmann, H. Erich (5)
Boomsma, Dorret I. (5)
Luan, Jian'an (5)
Metspalu, Andres (5)
Hicks, Andrew A. (5)
Pramstaller, Peter P ... (5)
Wright, Alan F. (5)
Jacobs, Kevin B (5)
Eriksson, Johan G. (5)
Montgomery, Grant W. (5)
Kathiresan, Sekar (5)
Zillikens, M. Carola (5)
visa färre...
Lärosäte
Lunds universitet (32)
Karolinska Institutet (17)
Göteborgs universitet (9)
Umeå universitet (9)
Uppsala universitet (8)
Kungliga Tekniska Högskolan (3)
visa fler...
Stockholms universitet (2)
Örebro universitet (2)
Linköpings universitet (1)
Mittuniversitetet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy