SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grundberg E) "

Sökning: WFRF:(Grundberg E)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Grundberg, E, et al. (författare)
  • Large-scale association study between two coding LRP5 gene polymorphisms and bone phenotypes and fractures in men
  • 2007
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 19:6, s. 829-837
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary  Herein we investigated the association between polymorphisms in the LRP5 gene and bone phenotypes and fractures in three large male cohorts based on the rationale that mutations in LRP5 cause severe bone phenotypes. Results showed an association of the Val667Met SNP with spine BMD in 3,800 young and elderly men. Introduction  The low-density lipoprotein receptor-related protein 5 (LRP5)-Wnt signalling system is of importance for regulating osteoblastic activity, which became clear after findings that inactivating mutations in LRP5 cause osteoporosis. The overall aim of this study was to investigate the association between polymorphisms in the LRP5 gene and bone mineral density (BMD) in three large cohorts of young and elderly men. Methods  The cohorts used were MrOS Sweden (n = 3014, aged 69–81 years) and MrOs Hong Kong (n = 2000, aged  > 65 years) and the Swedish GOOD study (n = 1068, aged 18–20 years). The polymorphisms Val667Met and Ala1330Val were genotyped using a TaqMan assay. Results  When combining the data from the Swedish cohorts in a meta-analysis (n = 3,800), men carrying the 667Met-allele had 3% lower BMD at lumbar spine compared with non-carriers (p < 0.05). The Val667Met SNP was not polymorphic in the Hong Kong population and thus were not included. There were no associations between the Ala1330Val SNP and bone phenotypes in the study populations. No associations between the LRP5 polymorphisms and self-reported fractures were seen in MrOs Sweden. Conclusions  Results from these three large cohorts indicate that the Val667Met polymorphism but not the Ala1330Val contributes to the observed variability in BMD in the Swedish populations.
  •  
5.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
6.
  • Zheng, J., et al. (författare)
  • Mendelian Randomization Analysis Reveals a Causal Influence of Circulating Sclerostin Levels on Bone Mineral Density and Fractures
  • 2019
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 34:10, s. 1824-1836
  • Tidskriftsartikel (refereegranskat)abstract
    • In bone, sclerostin is mainly osteocyte-derived and plays an important local role in adaptive responses to mechanical loading. Whether circulating levels of sclerostin also play a functional role is currently unclear, which we aimed to examine by two-sample Mendelian randomization (MR). A genetic instrument for circulating sclerostin, derived from a genomewide association study (GWAS) meta-analysis of serum sclerostin in 10,584 European-descent individuals, was examined in relation to femoral neck bone mineral density (BMD; n = 32,744) in GEFOS and estimated bone mineral density (eBMD) by heel ultrasound (n = 426,824) and fracture risk (n = 426,795) in UK Biobank. Our GWAS identified two novel serum sclerostin loci, B4GALNT3 (standard deviation [SD]) change in sclerostin per A allele (beta = 0.20, p = 4.6 x 10(-49)) and GALNT1 (beta = 0.11 per G allele, p = 4.4 x 10(-11)). B4GALNT3 is an N-acetyl-galactosaminyltransferase, adding a terminal LacdiNAc disaccharide to target glycocoproteins, found to be predominantly expressed in kidney, whereas GALNT1 is an enzyme causing mucin-type O-linked glycosylation. Using these two single-nucleotide polymorphisms (SNPs) as genetic instruments, MR revealed an inverse causal relationship between serum sclerostin and femoral neck BMD (beta = -0.12, 95% confidence interval [CI] -0.20 to -0.05) and eBMD (beta = -0.12, 95% CI -0.14 to -0.10), and a positive relationship with fracture risk (beta = 0.11, 95% CI 0.01 to 0.21). Colocalization analysis demonstrated common genetic signals within the B4GALNT3 locus for higher sclerostin, lower eBMD, and greater B4GALNT3 expression in arterial tissue (probability >99%). Our findings suggest that higher sclerostin levels are causally related to lower BMD and greater fracture risk. Hence, strategies for reducing circulating sclerostin, for example by targeting glycosylation enzymes as suggested by our GWAS results, may prove valuable in treating osteoporosis. (c) 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
  •  
7.
  • Allum, F, et al. (författare)
  • Dissecting features of epigenetic variants underlying cardiometabolic risk using full-resolution epigenome profiling in regulatory elements
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 1209-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sparse profiling of CpG methylation in blood by microarrays has identified epigenetic links to common diseases. Here we apply methylC-capture sequencing (MCC-Seq) in a clinical population of ~200 adipose tissue and matched blood samples (Ntotal~400), providing high-resolution methylation profiling (>1.3 M CpGs) at regulatory elements. We link methylation to cardiometabolic risk through associations to circulating plasma lipid levels and identify lipid-associated CpGs with unique localization patterns in regulatory elements. We show distinct features of tissue-specific versus tissue-independent lipid-linked regulatory regions by contrasting with parallel assessments in ~800 independent adipose tissue and blood samples from the general population. We follow-up on adipose-specific regulatory regions under (1) genetic and (2) epigenetic (environmental) regulation via integrational studies. Overall, the comprehensive sequencing of regulatory element methylomes reveals a rich landscape of functional variants linked genetically as well as epigenetically to plasma lipid traits.
  •  
8.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
9.
  • Grundberg, E, et al. (författare)
  • A deletion polymorphism in the RIZ gene, a female sex steroid hormone receptor coactivator, exhibits decreased response to estrogen in vitro and associates with low bone mineral density in young Swedish women
  • 2004
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 89:12, s. 6173-6178
  • Tidskriftsartikel (refereegranskat)abstract
    • Low bone mineral density (BMD) is a major risk factor for osteoporotic fracture, and the trait is under genetic control by a large number of genes. It is recognized that estrogen plays an important role in the maintenance of bone mass by binding to estrogen receptor a (ERa). RIZ1 has previously been shown to be a specific ERa coactivator and strongly enhances its function both in vivo and in vitro. We performed in vitro studies comparing the abilities of RIZ1 P704 polymorphic variants (homozygous presence, P704+; absence, P704-; heterozygosity P704+/- of a proline at position 704) to coactivate the ERa and also examined the polymorphism associated to BMD of 343 Swedish women, aged 20-39 yr. The expression vector containing P704- RIZ1 showed an impaired response in coactivating ERa in a ligand- and dose-dependent manner compared with P704+ RIZ (P < 0.0001). The genotype frequencies were 19% (P704+), 32% (P704-), and 49% (P704+/-) and were in Hardy-Weinberg equilibrium. BMD at the heel was higher in the P704+ genotype group than in the P704+/- group (P = 0.02), which was evident also after corrections for fat and lean mass (P = 0.03). We conclude that RIZ1 may be a new candidate gene for involvement in the variation seen in BMD.
  •  
10.
  • Grundberg, Elin, et al. (författare)
  • Mapping cis- and trans-regulatory effects across multiple tissues in twins.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Morris, John A, et al. (författare)
  • An atlas of genetic influences on osteoporosis in humans and mice.
  • 2019
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 51, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds ratio (OR)=58, P=1 × 10-75) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice with disruptions in predicted target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P<0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence linking associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and highlights opportunities for drug development.
  •  
16.
  • Small, K. S., et al. (författare)
  • Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes
  • 2011
  • Ingår i: Nat Genet. ; 43:6, s. 561-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified many genetic variants associated with complex traits. However, at only a minority of loci have the molecular mechanisms mediating these associations been characterized. In parallel, whereas cis regulatory patterns of gene expression have been extensively explored, the identification of trans regulatory effects in humans has attracted less attention. Here we show that the type 2 diabetes and high-density lipoprotein cholesterol-associated cis-acting expression quantitative trait locus (eQTL) of the maternally expressed transcription factor KLF14 acts as a master trans regulator of adipose gene expression. Expression levels of genes regulated by this trans-eQTL are highly correlated with concurrently measured metabolic traits, and a subset of the trans-regulated genes harbor variants directly associated with metabolic phenotypes. This trans-eQTL network provides a mechanistic understanding of the effect of the KLF14 locus on metabolic disease risk and offers a potential model for other complex traits.
  •  
17.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
18.
  • Baird, Denis A., et al. (författare)
  • Identification of Novel Loci Associated With Hip Shape : A Meta-Analysis of Genomewide Association Studies.
  • 2019
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley-Blackwell. - 0884-0431 .- 1523-4681. ; 34:2, s. 241-251
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to report the first genomewide association study (GWAS) meta-analysis of dual-energy X-ray absorptiometry (DXA)-derived hip shape, which is thought to be related to the risk of both hip osteoarthritis and hip fracture. Ten hip shape modes (HSMs) were derived by statistical shape modeling using SHAPE software, from hip DXA scans in the Avon Longitudinal Study of Parents and Children (ALSPAC; adult females), TwinsUK (mixed sex), Framingham Osteoporosis Study (FOS; mixed), Osteoporotic Fractures in Men study (MrOS), and Study of Osteoporotic Fractures (SOF; females) (total N = 15,934). Associations were adjusted for age, sex, and ancestry. Five genomewide significant (p < 5 × 10-9 , adjusted for 10 independent outcomes) single-nucleotide polymorphisms (SNPs) were associated with HSM1, and three SNPs with HSM2. One SNP, in high linkage disequilibrium with rs2158915 associated with HSM1, was associated with HSM5 at genomewide significance. In a look-up of previous GWASs, three of the identified SNPs were associated with hip osteoarthritis, one with hip fracture, and five with height. Seven SNPs were within 200 kb of genes involved in endochondral bone formation, namely SOX9, PTHrP, RUNX1, NKX3-2, FGFR4, DICER1, and HHIP. The SNP adjacent to DICER1 also showed osteoblast cis-regulatory activity of GSC, in which mutations have previously been reported to cause hip dysplasia. For three of the lead SNPs, SNPs in high LD (r2  > 0.5) were identified, which intersected with open chromatin sites as detected by ATAC-seq performed on embryonic mouse proximal femora. In conclusion, we identified eight SNPs independently associated with hip shape, most of which were associated with height and/or mapped close to endochondral bone formation genes, consistent with a contribution of processes involved in limb growth to hip shape and pathological sequelae. These findings raise the possibility that genetic studies of hip shape might help in understanding potential pathways involved in hip osteoarthritis and hip fracture. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
  •  
19.
  • Billings, LK, et al. (författare)
  • Impact of common variation in bone-related genes on type 2 diabetes and related traits
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:8, s. 2176-2186
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploring genetic pleiotropy can provide clues to a mechanism underlying the observed epidemiological association between type 2 diabetes and heightened fracture risk. We examined genetic variants associated with bone mineral density (BMD) for association with type 2 diabetes and glycemic traits in large well-phenotyped and -genotyped consortia. We undertook follow-up analysis in ∼19,000 individuals and assessed gene expression. We queried single nucleotide polymorphisms (SNPs) associated with BMD at levels of genome-wide significance, variants in linkage disequilibrium (r2 &gt; 0.5), and BMD candidate genes. SNP rs6867040, at the ITGA1 locus, was associated with a 0.0166 mmol/L (0.004) increase in fasting glucose per C allele in the combined analysis. Genetic variants in the ITGA1 locus were associated with its expression in the liver but not in adipose tissue. ITGA1 variants appeared among the top loci associated with type 2 diabetes, fasting insulin, β-cell function by homeostasis model assessment, and 2-h post–oral glucose tolerance test glucose and insulin levels. ITGA1 has demonstrated genetic pleiotropy in prior studies, and its suggested role in liver fibrosis, insulin secretion, and bone healing lends credence to its contribution to both osteoporosis and type 2 diabetes. These findings further underscore the link between skeletal and glucose metabolism and highlight a locus to direct future investigations.
  •  
20.
  • Björk, Anne, et al. (författare)
  • Variations in the vitamin D receptor gene are not associated with measures of muscle strength, physical performance, or falls in elderly men : Data from MrOS Sweden
  • 2019
  • Ingår i: Journal of Steroid Biochemistry and Molecular Biology. - : Elsevier BV. - 0960-0760 .- 1879-1220. ; 187, s. 160-165
  • Tidskriftsartikel (refereegranskat)abstract
    • The vitamin D receptor (VDR) has been proposed as a candidate gene for several musculoskeletal phenotypes. However, previous results on the associations between genetic variants of the VDR with muscle strength and falls have been contradictory. The MrOS Sweden survey, a prospective population-based cohort study of 3014 elderly men (mean age 75 years, range 69-81) offered the opportunity to further investigate these associations. At baseline, data were collected on muscle strength and also the prevalence of falls during the previous 12 months. Genetic association analysis was performed for 7 Single Nucleotide Polymorphisms (SNPs), covering the genetic region surrounding the VDR gene in 2924 men with available samples of DNA. Genetic variations in the VDR were not associated with five different measurements of muscle strength or physical performance (hand grip strength right and left, 6 m walking test (easy and narrow) and timed-stands test). However, one of the 7 SNPs of the gene for the VDR receptor, rs7136534, was associated with prevalence of falls (33.6% of the AA, 14.6% of the AG and 16.5% of the GG allele). In conclusion, VDR genetic variants are not related to muscle strength or physical performance in elderly Swedish men. The role of the rs7136534 SNP for the occurrence of falls is not clear.
  •  
21.
  •  
22.
  • Glass, Daniel, et al. (författare)
  • Gene expression changes with age in skin, adipose tissue, blood and brain.
  • 2013
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.RESULTS: Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.CONCLUSIONS: Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.
  •  
23.
  •  
24.
  • Hsu, Yi-Hsiang, et al. (författare)
  • An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits
  • 2010
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 6:6, s. e1000977-
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6 x 10(-8)), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6 x 10(-13); SOX6, p = 6.4 x 10(-10)) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation.
  •  
25.
  • Kemp, John P, et al. (författare)
  • Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.
  • 2014
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
  •  
26.
  • Kooner, Jaspal S, et al. (författare)
  • Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci.
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a genome-wide association study of type-2 diabetes (T2D) in individuals of South Asian ancestry. Our discovery set included 5,561 individuals with T2D (cases) and 14,458 controls drawn from studies in London, Pakistan and Singapore. We identified 20 independent SNPs associated with T2D at P < 10(-4) for testing in a replication sample of 13,170 cases and 25,398 controls, also all of South Asian ancestry. In the combined analysis, we identified common genetic variants at six loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) newly associated with T2D (P = 4.1 × 10(-8) to P = 1.9 × 10(-11)). SNPs at GRB14 were also associated with insulin sensitivity (P = 5.0 × 10(-4)), and SNPs at ST6GAL1 and HNF4A were also associated with pancreatic beta-cell function (P = 0.02 and P = 0.001, respectively). Our findings provide additional insight into mechanisms underlying T2D and show the potential for new discovery from genetic association studies in South Asians, a population with increased susceptibility to T2D.
  •  
27.
  • Marsell, Richard, et al. (författare)
  • Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men.
  • 2008
  • Ingår i: European journal of endocrinology / European Federation of Endocrine Societies. - 1479-683X .- 0804-4643. ; 158:1, s. 125-9
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Fibroblast growth factor-23 (FGF23) is a circulating factor involved in phosphate (Pi) and vitamin D metabolism. Serum FGF23 is increased at later stages of chronic kidney disease due to chronic hyperphosphatemia and decreased renal clearance. Recent studies also indicate that FGF23 may directly regulate the expression of parathyroid hormone (PTH) in vitro. Therefore, the objective of the current study was to determine the relationship between FGF23, PTH, and other biochemistries in vivo in subjects with no history of renal disease. DESIGN: Serum biochemistries were measured in a subsample of the population-based Swedish part of the MrOS study. In total, 1000 Caucasian men aged 70-80 years were randomly selected from the population. METHODS: Intact FGF23, Pi, calcium, albumin, estimated glomerular filtration rate (eGFR, calculated from cystatin C), PTH, and 25(OH)D3 were measured. Association studies were performed using linear univariate and multivariate regression analyses. RESULTS: The median FGF23 level was 36.6 pg/ml, ranging from 0.63 to 957 pg/ml. There was a significant correlation between log FGF23 and eGFR (r=-0.21; P<0.00001) and log PTH (r=0.13; P<0.001). These variables remained as independent predictors of FGF23 in multivariate analysis. In addition, log PTH (beta=0.082; P<0.05) and eGFR (beta=-0.090; P<0.05) were associated with log FGF23 in subjects with eGFR>60 ml/min. Only eGFR (beta=-0.35; P<0.0001) remained as a predictor of log FGF23 in subjects with eGFR<60 ml/min. CONCLUSIONS: Serum FGF23 and PTH are associated in vivo, supporting recent findings that FGF23 directly regulates PTH expression in vitro. Additionally, eGFR is associated with FGF23 in subjects with normal or mildly impaired renal function, indicating that GFR may modulate FGF23 levels independent of serum Pi.
  •  
28.
  • Ohlsson, K.E. Anders, et al. (författare)
  • Dynamic model for measurement of convective heat transfer coefficient at external building surfaces
  • 2016
  • Ingår i: Journal of Building Engineering. - : Elsevier. - 2352-7102. ; 7, s. 239-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Uncertainties in current empirical models for the convective heat transfer coefficient (CHTC) have large impact on the accuracy of building energy simulations (BES). These models are often based on measurements of the CHTC, using a heated gradient sensor, where steady-state convective air flow is assumed. If this requirement is not fulfilled there will be a dynamic measurement error. The objectives were to construct a validated dynamic model for the heated gradient sensor, and to use this model to improve accuracy by suggesting changes in sensor design and operating procedure. The linear thermal network model included three state-space variables, selected as the temperatures of the three layers of the heated gradient sensor. Predictions of the major time constant and temperature time evolution were in acceptable agreement with experimental results obtained from step-response experiments. Model simulations and experiments showed that the sensor time constant increases with decreasing CHTC value, which means that the sensor response time is at maximum under free convection conditions. Under free convection, the surface heat transfer resistance is at maximum, which cause enhanced heat loss through the sensor insulation layer. Guidelines are given for selection of sampling frequency, and for evaluation of dynamic measurement errors.
  •  
29.
  •  
30.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy