SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grundemar Lars) "

Sökning: WFRF:(Grundemar Lars)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cervin, Anders, et al. (författare)
  • Functional effects of neuropeptide Y receptors on blood flow and nitric oxide levels in the human nose
  • 1999
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : American Thoracic Society. - 1535-4970 .- 1073-449X. ; 160:5, s. 1724-1728
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to examine dose-dependent effects of intranasal application of neuropeptide Y (NPY) on nasal mucosal blood flow, blood content, and intranasal nitric oxide (NO) concentration. Blood flow was measured by laser Doppler flowmetry (LDF) and blood content by rhinomanometry. Mucosal biopsies were taken for investigation of Y1 and Y2 receptor mRNA expression, using the reverse transcriptase-polymerase chain reaction (RT-PCR). Intranasal application of NPY evoked a dose-dependent reduction of nasal mucosal blood flow. Maximal vasoconstriction, seen at 12 nmol, was -37.5 +/- 6.2%, p < 0.05 (n = 9). The vasoconstrictive effect developed within 2 to 4 min and lasted > 17 min. NPY evoked a dose-dependent reduction of nasal airway resistance (NAR) on the ipsilateral side. Maximal decrease was -24.0 +/- 10.0% at 12 nmol, p < 0.05 (n = 9). There was a decrease in nasal NO production on the ipsilateral side after application of NPY 12 nmol (-7.4 +/- 1.2%, p < 0.05, n = 8). RT-PCR products corresponding to Y1 receptor but not Y2 receptor mRNA were obtained from biopsies of the nasal mucosa. In conclusion, NPY is a potent vasoconstrictor in the human nose reducing mucosal blood flow, as well as the blood content. The effect is probably mediated via Y1 receptors. NPY receptor agonists may prove beneficial in the treatment of the congested nose in allergic or vasomotor rhinitis.
  •  
2.
  •  
3.
  • Nilsson, Johan L.Å., et al. (författare)
  • N,N'-Bis(2-mercaptoethyl)isophthalamide Binds Electrophilic Paracetamol Metabolites and Prevents Paracetamol-Induced Liver Toxicity
  • 2018
  • Ingår i: Basic and Clinical Pharmacology and Toxicology. - : Wiley. - 1742-7835. ; 123:5, s. 589-593
  • Tidskriftsartikel (refereegranskat)abstract
    • Paracetamol overdosing may cause liver injury including fulminant liver failure due to generation of the toxic metabolites, N-acetyl-p-benzoquinone imine (NAPQI) and p-benzoquinone (p-BQ). Herein, the chelating agent, N,N'-Bis(2-mercaptoethyl)isophthalamide (NBMI), was examined for its potential ability to entrap NAPQI and p-BQ and to prevent paracetamol-induced liver injury. Both NBMI and the conventional paracetamol antidote N-acetylcysteine (NAC) were investigated with regard to their abilities to scavenge the NAPQI and p-BQ in a Transient Receptor Potential Ankyrin 1-dependent screening assay. Stoichiometric evaluations indicated that NBMI was able to entrap these metabolites more efficiently than NAC. Furthermore, oral administration of either NBMI (680 mg/kg) or NAC (680 mg/kg) prevented the development of the characteristic liver necrosis and elevation of serum alanine aminotransferase in a mouse model for paracetamol-induced liver injury. In summary, these results show that NBMI is able to entrap the toxic metabolites NAPQI and p-BQ and to prevent paracetamol-induced liver injury in mice.
  •  
4.
  • Nilsson, Johan, et al. (författare)
  • Paracetamol analogues conjugated by FAAH induce TRPV1-mediated antinociception without causing acute liver toxicity
  • 2021
  • Ingår i: European Journal of Medicinal Chemistry. - : Elsevier BV. - 0223-5234 .- 1768-3254. ; 213
  • Tidskriftsartikel (refereegranskat)abstract
    • Paracetamol, one of the most widely used pain-relieving drugs, is deacetylated to 4-aminophenol (4-AP) that undergoes fatty acid amide hydrolase (FAAH)-dependent biotransformation into N-arachidonoylphenolamine (AM404), which mediates TRPV1-dependent antinociception in the brain of rodents. However, paracetamol is also converted to the liver-toxic metabolite N-acetyl-p-benzoquinone imine already at therapeutic doses, urging for safer paracetamol analogues. Primary amine analogues with chemical structures similar to paracetamol were evaluated for their propensity to undergo FAAH-dependent N-arachidonoyl conjugation into TRPV1 activators both in vitro and in vivo in rodents. The antinociceptive and antipyretic activity of paracetamol and primary amine analogues was examined with regard to FAAH and TRPV1 as well as if these analogues produced acute liver toxicity. 5-Amino-2-methoxyphenol (2) and 5-aminoindazole (3) displayed efficient target protein interactions with a dose-dependent antinociceptive effect in the mice formalin test, which in the second phase was dependent on FAAH and TRPV1. No hepatotoxicity of the FAAH substrates transformed into TRPV1 activators was observed. While paracetamol attenuates pyrexia via inhibition of brain cyclooxygenase, its antinociceptive FAAH substrate 4-AP was not antipyretic, suggesting separate mechanisms for the antipyretic and antinociceptive effect of paracetamol. Furthermore, compound 3 reduced fever without a brain cyclooxygenase inhibitory action. The data support our view that analgesics and antipyretics without liver toxicity can be derived from paracetamol. Thus, research into the molecular actions of paracetamol could pave the way for the discovery of analgesics and antipyretics with a better benefit-to-risk ratio.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy