SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grusch Michael) "

Sökning: WFRF:(Grusch Michael)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ries, Alexander, et al. (författare)
  • Primary and hTERT-Transduced Mesothelioma-Associated Fibroblasts but Not Primary or hTERT-Transduced Mesothelial Cells Stimulate Growth of Human Mesothelioma Cells
  • 2023
  • Ingår i: Cells. - 2073-4409. ; 12:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.
  •  
2.
  • Rozsas, Anita, et al. (författare)
  • Erythropoietin Receptor Expression Is a Potential Prognostic Factor in Human Lung Adenocarcinoma
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombinant human erythropoietins (rHuEPOs) are used to treat cancer-related anemia. Recent preclinical studies and clinical trials, however, have raised concerns about the potential tumor-promoting effects of these drugs. Because the clinical significance of erythropoietin receptor (EPOR) signaling in human non-small cell lung cancer (NSCLC) also remains controversial, our aim was to study whether EPO treatment modifies tumor growth and if EPOR expression has an impact on the clinical behavior of this malignancy. A total of 43 patients with stage III-IV adenocarcinoma (ADC) and complete clinicopathological data were included. EPOR expression in human ADC samples and cell lines was measured by quantitative real-time polymerase chain reaction. Effects of exogenous rHuEPO alpha were studied on human lung ADC cell lines in vitro. In vivo growth of human ADC xenografts treated with rHuEPO alpha with or without chemotherapy was also assessed. In vivo tumor and endothelial cell (EC) proliferation was determined by 5-bromo-2'-deoxy-uridine (BrdU) incorporation and immunofluorescent labeling. Although EPOR mRNA was expressed in all of the three investigated ADC cell lines, rHuEPO alpha treatment (either alone or in combination with gemcitabine) did not alter ADC cell proliferation in vitro. However, rHuEPO alpha significantly decreased tumor cell proliferation and growth of human H1975 lung ADC xenografts. At the same time, rHuEPO alpha treatment of H1975 tumors resulted in accelerated tumor endothelial cell proliferation. Moreover, in patients with advanced stage lung ADC, high intratumoral EPOR mRNA levels were associated with significantly increased overall survival. This study reveals high EPOR level as a potential novel positive prognostic marker in human lung ADC.
  •  
3.
  • Solta, Anna, et al. (författare)
  • Entinostat Enhances the Efficacy of Chemotherapy in Small Cell Lung Cancer Through S-phase Arrest and Decreased Base Excision Repair
  • 2023
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1078-0432. ; 29:22, s. 4644-4659
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Acquired chemoresistance is a frequent event in small cell lung cancer (SCLC), one of the deadliest human malignancies. Histone deacetylase inhibitors (HDACi) have been shown to synergize with different chemotherapeutic agents including cisplatin. Accordingly, we aimed to investigate the dual targeting of HDAC inhibition and chemotherapy in SCLC.EXPERIMENTAL DESIGN: The efficacy of HDACi and chemotherapy in SCLC was investigated both in vitro and in vivo. Synergistic drug interactions were calculated based on the HSA model (Combenefit software). Results from the proteomic analysis were confirmed via ICP-MS, cell-cycle analysis, and comet assays.RESULTS: Single entinostat- or chemotherapy significantly reduced cell viability in human neuroendocrine SCLC cells. The combination of entinostat with either cisplatin, carboplatin, irinotecan, epirubicin, or etoposide led to strong synergy in a subset of resistant SCLC cells. Combination treatment with entinostat and cisplatin significantly decreased tumor growth in vivo. Proteomic analysis comparing the groups of SCLC cell lines with synergistic and additive response patterns indicated alterations in cell-cycle regulation and DNA damage repair. Cell-cycle analysis revealed that cells exhibiting synergistic drug responses displayed a shift from G1 to S-phase compared with cells showing additive features upon dual treatment. Comet assays demonstrated more DNA damage and decreased base excision repair in SCLC cells more responsive to combination therapy.CONCLUSIONS: In this study, we decipher the molecular processes behind synergistic interactions between chemotherapy and HDAC inhibition. Moreover, we report novel mechanisms to overcome drug resistance in SCLC, which may be relevant to increasing therapeutic success.
  •  
4.
  • Valko, Zsuzsanna, et al. (författare)
  • Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer
  • 2023
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 128:10, s. 1850-1861
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: No targeted drugs are currently available against small cell lung cancer (SCLC). BCL-2 family members are involved in apoptosis regulation and represent therapeutic targets in many malignancies. Methods: Expression of BCL-2 family members in 27 SCLC cell lines representing all known four SCLC molecular subtypes was assessed by qPCR, Western blot and mass spectrometry-based proteomics. BCL-2 and MCL-1 inhibition (venetoclax and S63845, respectively) was assessed by MTT assay and flow cytometry and in mice bearing human SCLC tumours. Drug interactions were calculated using the Combenefit software. Ectopic BAX overexpression was achieved by expression plasmids. Results: The highest BCL-2 expression levels were detected in ASCL1- and POU2F3-driven SCLC cells. Although sensitivity to venetoclax was reflected by BCL-2 levels, not all cell lines responded consistently despite their high BCL-2 expression. MCL-1 overexpression and low BAX levels were both characteristic for venetoclax resistance in SCLC, whereas the expression of other BCL-2 family members did not affect therapeutic efficacy. Combination of venetoclax and S63845 resulted in significant, synergistic in vitro and in vivo anti-tumour activity and apoptosis induction in double-resistant cells; however, this was seen only in a subset with detectable BAX. In non-responding cells, ectopic BAX overexpression sensitised to venetoclax and S63845 and, furthermore, induced synergistic drug interaction. Conclusions: The current study reveals the subtype specificity of BCL-2 expression and sheds light on the mechanism of venetoclax resistance in SCLC. Additionally, we provide preclinical evidence that combined BCL-2 and MCL-1 targeting is an effective approach to overcome venetoclax resistance in high BCL-2-expressing SCLCs with intact BAX.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy