SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grydeland T.) "

Sökning: WFRF:(Grydeland T.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wannberg, Gudmund, et al. (författare)
  • EISCAT_3D - a next-generation European radar system for upper atmosphere and geospace research
  • 2010
  • Ingår i: Radio Science Bulletin. - 1024-4530. ; :333, s. 75-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The EISCAT Scientifi c Association, together with a number of collaborating institutions, has recently completed a feasibility and design study for an enhanced performance research radar facility to replace the existing EISCAT UHF and VHF systems. This study was supported by EU Sixth-Framework funding. The new radar retains the powerful multi-static geometry of the EISCAT UHF, but will employ phased arrays, direct-sampling receivers, and digital beamforming and beam steering. Design goals include, inter alia, a tenfold improvement in temporal and spatial resolution, an extension of the instantaneous measurement of full-vector ionospheric drift velocities from a single point to the entire altitude range of the radar, and an imaging capability to resolve small-scale structures. Prototype receivers and beamformers are currently being tested on a 48-element, 224 MHz array (the "Demonstrator") erected at the Kiruna EISCAT site, using the EISCAT VHF transmitter as an illuminator.
  •  
2.
  • Blixt, E. M., et al. (författare)
  • Dynamic rayed aurora and enhanced ion-acoustic radar echoes
  • 2005
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 23:1, s. 3-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR) and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100 eV) precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7 kin away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced) are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.
  •  
3.
  • Schlatter, Nicola Manuel, et al. (författare)
  • Auroral ion acoustic wave enhancement observed with a radar interferometer system
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:7, s. 837-844
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EIS-CAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 x 500 m, and at times less than 160m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.
  •  
4.
  • Schlatter, Nicola, 1985-, et al. (författare)
  • Radar interferometer calibration of the EISCAT Svalbard Radar and a additional receiver station
  • 2013
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 105-106, s. 287-292
  • Tidskriftsartikel (refereegranskat)abstract
    • The EISCAT Svalbard Radar has two parabolic dishes. In order to attempt to implement radar aperture synthesis imaging methods three smaller, passive receive array antennas were built. Several science goals for this new receiver system exist, the primary of which is to study so called naturally enhanced ion acoustic lines. In order to compare radar aperture synthesis imaging results with measurements from optical imagers, calibration of the radar interferometer system is necessary. In this work we present the phase calibration of the EISCAT Svalbard interferometer including one array antenna. The calibration was done using the coherent scatter from satellites passing through the radar beam. Optical signatures of the satellite transits provide accurate position for the satellites. By using transits of a number of satellites sufficient for mapping the radar beam, the interferometric cross-phase was fitted within the radar beam. The calibration technique presented in this work will be applied to all antenna pairs of the antenna configuration for future interferometry studies.
  •  
5.
  • Sullivan, J. M., et al. (författare)
  • Phase calibration of the EISCAT Svalbard Radar interferometer using optical satellite signatures
  • 2006
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 24:9, s. 2419-2427
  • Tidskriftsartikel (refereegranskat)abstract
    • The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.
  •  
6.
  • Vierinen, J., et al. (författare)
  • Space debris observation potential with EISCAT 3D
  • 2018
  • Ingår i: 2ND URSI ATLANTIC RADIO SCIENCE MEETING (AT-RASC). - : IEEE. - 9789082598735
  • Konferensbidrag (refereegranskat)abstract
    • We investigate the capabilities of the next generation ionospheric research radar EISCAT 3D (E3D) for space debris observations. We have used the current projected design of E3D as basis of this study. To model the performance of E3D for space debris observations, we have included basic radar equation based error analysis for range and range-rate observations. Because the radar will be multi-static, it is also capable of observing instantaneous three-dimensional vector velocities and positions by observing round-trip range and range-rate between the transmitter and three receiver sites. We have included error estimates for both of the the three-dimensional position and three-dimensional vector velocity observations. To estimate the fraction of total debris that can be observed with E3D, we have used the MASTER model. We have also investigated effects of radio wave propagation. E3D uses a relatively low VHF frequency (233 MHz), which experiences more radio wave propagation effects than more conventional higher frequency space surveillance radars. Our modeling shows that ionospheric ray-bending and group delay are severe enough that these effects need to be modeled in order to determine accurate orbital elements. As EISCAT 3D is an ionospheric research radar, there will be high quality ionospheric electron density measurements that can be utilized for radio propagation modeling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy