SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guasconi Daniela 1992 ) "

Sökning: WFRF:(Guasconi Daniela 1992 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guasconi, Daniela, 1992-, et al. (författare)
  • Climate-dependent responses of root and shoot biomass to drought duration and intensity in grasslands–a meta-analysis
  • 2023
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 903
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the effects of altered precipitation regimes on root biomass in grasslands is crucial for predicting grassland responses to climate change. Nonetheless, studies investigating the effects of drought on belowground vegetation have produced mixed results. In particular, root biomass under reduced precipitation may increase, decrease or show a delayed response compared to shoot biomass, highlighting a knowledge gap in the relationship between belowground net primary production and drought. To address this gap, we conducted a meta-analysis of nearly 100 field observations of grassland root and shoot biomass changes under experimental rainfall reduction to disentangle the main drivers behind grassland responses to drought. Using a response-ratio approach we tested the hypothesis that water scarcity would induce a decrease in total biomass, but an increase in belowground biomass allocation with increased drought length and intensity, and that climate (as defined by the aridity index of the study location) would be an additional predictor. As expected, meteorological drought decreased root and shoot biomass, but aboveground and belowground biomass exhibited contrasting responses to drought duration and intensity, and their interaction with climate. In particular, drought duration had negative effects on root biomass only in wet climates while more intense drought had negative effects on root biomass only in dry climates. Shoot biomass responded negatively to drought duration regardless of climate. These results show that long-term climate is an important modulator of belowground vegetation responses to drought, which might be a consequence of different drought tolerance and adaptation strategies. This variability in vegetation responses to drought suggests that physiological plasticity and community composition shifts may mediate how climate affects carbon allocation in grasslands, and thus ultimately carbon storage in soil.
  •  
2.
  • Guasconi, Daniela, 1992-, et al. (författare)
  • Spatial and temporal variability in soil and vegetation carbon dynamics under experimental drought and soil amendments
  • 2023
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Soils are the largest carbon (C) pool on the planet, and grassland soils have a particularly large C sequestration potential. Appropriate land management strategies, such as organic matter additions, can improve soil health, increase soil C stocks, and increase grassland resilience to drought by improving soil moisture retention. However, soil C dynamics are deeply linked to vegetation response to changes in both management and climate, which may also be manifested differently in roots and shoots. This study presents findings from a three-year experiment that assessed the impact of a compost amendment and of reduced precipitation on soil and vegetation C pools. Compost addition increased aboveground biomass and soil C content (%C), but because bulk density decreased, there was no significant effect on soil C stocks. Drought decreased aboveground biomass, but did not significantly affect root biomass. Overall, the soil amendment shifted C allocation to aboveground plant organs, and drought to belowground organs. We also observed significant spatial and temporal variability in vegetation biomass and soil C over the study period. These results highlight the need to consider multiple biotic and abiotic factors driving ecosystem C dynamics across spatial scales when upscaling results from field trials.
  •  
3.
  • Guasconi, Daniela, 1992- (författare)
  • The hidden half of the meadow : Interactions between drought, soil carbon, roots and soil microbial communities
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Soil is a hidden ecosystem which harbours plant roots and countless microorganisms, vital for sustaining life aboveground. These belowground communities provide essential ecosystem services like soil stabilisation and organic matter decomposition. Soil is also one of the largest terrestrial carbon repositories, and land management strategies aimed at increasing organic matter inputs from plants, such as compost additions, can promote further soil carbon accumulation. Because organic carbon is important for soil water retention, this management may also help to increase resilience against more frequent and intense droughts. Although roots and microbial communities are largely acknowledged to play a key role in regulating the carbon cycle, there are still many open questions regarding the link between above- and belowground processes and ecosystem functions. Observing climate- and management-driven changes in the soil habitat is fundamental for understanding how ecosystems respond to environmental change.The aim of this thesis is to explore the relationship between soil properties, plant communities, and soil microbial communities in response to environmental changes. The research builds on a meta-analysis of drought effects on grasslands, and a multifactorial field experiment which combined three years of precipitation reduction and a compost treatment in two Swedish grasslands. We analysed the response of roots and soil microbial communities to drought and compost amendments, and identified environmental factors behind their large spatial variability. Finally, we tested the effects of compost additions on soil carbon storage and its interactions with drought.The results of the meta-analysis indicate that, on a global scale, grassland roots and shoots have diverging responses to drought duration and intensity, with long-term climate mediating that difference. At the local scale assessed in the field experiment, we observed that the spatial patterns of soil microbial communities were driven by soil properties and vegetation. Growing season drought affected roots only at trait level, but did not significantly affect microbial communities. Positive effects of compost on aboveground plant productivity and fungal growth were detectable after three years. Compost amendments also increased the percentage of total soil carbon, but no net increase in soil carbon stocks was detected. Spatial variability in roots and microbial communities was larger than the treatment effects, and was important in shaping microbial community composition and determining grassland responses to drought.Taken together, these findings suggest that roots and microbial communities are likely to be tolerant to drought a within the timescale of this experiment, but we did not observe an increase soil carbon sequestration or drought resilience when adding compost. This thesis highlights the importance of considering soil processes as complementary to aboveground observations when studying carbon dynamics, predicting ecosystem responses to environmental change, and developing sustainable land management practices.
  •  
4.
  • Guasconi, Daniela, 1992-, et al. (författare)
  • Vegetation, topography, and soil depth drive microbial community structure in two Swedish grasslands
  • 2023
  • Ingår i: FEMS Microbiology Ecology. - 0168-6496 .- 1574-6941. ; 99:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil microbial diversity and community composition are shaped by various factors linked to land management, topographic position,and vegetation. To study the effects of these drivers, we characterized fungal and bacterial communities from bulk soil at four soildepths ranging from the surface to below the rooting zone of two Swedish grasslands with differing land-use histories, each includingboth an upper and a lower catenary position. We hypothesized that differences in plant species richness and plant functional groupcomposition between the four study sites would drive the variation in soil microbial community composition and correlate withmicrobial diversity, and that microbial biomass and diversity would decrease with soil depth following a decline in resource availability.While vegetation was identified as the main driver of microbial community composition, the explained variation was significantlyhigher for bacteria than for fungi, and the communities differed more between grasslands than between catenary positions. Microbialbiomass derived from DNA abundance decreased with depth, but diversity remained relatively stable, indicating diverse microbialcommunities even below the rooting zone. Finally, plant-microbial diversity correlations were significant only for specific plant andfungal functional groups, emphasizing the importance of functional interactions over general species richness
  •  
5.
  • Johansson, Anna, et al. (författare)
  • Long-term soil organic carbon changes after cropland conversion to grazed grassland in Southern Sweden
  • 2024
  • Ingår i: Soil use and management. - 0266-0032 .- 1475-2743. ; 40:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing awareness of the potential value of agricultural land for climate change mitigation. In Sweden, cropland areas have decreased by approximately 30% over recent decades, creating opportunities for these former croplands to be managed for climate change mitigation by increasing soil organic carbon (SOC) stocks. One potential land-use change is conversion of cropland to grazed grasslands, but the long-term effect of such change in management is not well understood and likely varies with soil type and site-specific conditions. Through sampling of mineral and peatland soils within a 75-year chronosequence of land converted from crop production to grazed grassland, we assessed how time since conversion, catenary position, and soil depth affected SOC storage. The SOC stocks calculated at an equivalent soil or ash mass increased through time since conversion in mineral soils at all topographic positions, at a rate of ~0.65% year−1. Soils at low topographic positions gained the most carbon. Peat SOC stock gains after conversion were large, but only marginally significant and only when calculated at an equivalent ash mass. We conclude that the conversion of mineral soil to grazed grassland promotes SOC accumulation at our sites, but climate change mitigation potential would need to be evaluated through a full greenhouse gas balance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy