SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guidugli L) "

Sökning: WFRF:(Guidugli L)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoniou, Antonis C., et al. (författare)
  • A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:10, s. 885-892
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline BRCA1 mutations predispose to breast cancer. To identify genetic modifiers of this risk, we performed a genome-wide association study in 1,193 individuals with BRCA1 mutations who were diagnosed with invasive breast cancer under age 40 and 1,190 BRCA1 carriers without breast cancer diagnosis over age 35. We took forward 96 SNPs for replication in another 5,986 BRCA1 carriers (2,974 individuals with breast cancer and 3,012 unaffected individuals). Five SNPs on 19p13 were associated with breast cancer risk (P-trend = 2.3 x 10(-9) to Ptrend = 3.9 x 10(-7)), two of which showed independent associations (rs8170, hazard ratio (HR) = 1.26, 95% CI 1.17-1.35; rs2363956 HR = 0.84, 95% CI 0.80-0.89). Genotyping these SNPs in 6,800 population-based breast cancer cases and 6,613 controls identified a similar association with estrogen receptor-negative breast cancer (rs2363956 per-allele odds ratio (OR) = 0.83, 95% CI 0.75-0.92, P-trend = 0.0003) and an association with estrogen receptor-positive disease in the opposite direction (OR = 1.07, 95% CI 1.01-1.14, P-trend = 0.016). The five SNPs were also associated with triple-negative breast cancer in a separate study of 2,301 triple-negative cases and 3,949 controls (Ptrend = 1 x 10(-7) to Ptrend = 8 x 10(-5); rs2363956 per-allele OR = 0.80, 95% CI 0.74-0.87, P-trend = 1.1 x 10(-7)).
  •  
2.
  •  
3.
  •  
4.
  • Osorio, Ana, et al. (författare)
  • DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7×10-3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8×10-3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.
  •  
5.
  • Ganga, P. L., et al. (författare)
  • Tensegrity rings for deployable space antennas : Concept, design, analysis, and prototype testing
  • 2016
  • Ingår i: Springer Optimization and Its Applications. - Cham : Springer Publishing Company. ; , s. 269-304
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we describe a tensegrity ring of innovative conception for deployable space antennas. Large deployable space structures are mission-critical technologies for which deployment failure cannot be an option. The difficulty to fully reproduce and test on ground the deployment of large systems dictates the need for extremely reliable architectural concepts. In 2010, ESA promoted a study focused on the pre-development of breakthrough architectural concepts offering superior reliability. This study, which was performed as an initiative of ESA Small Medium Enterprises Office by Kayser Italia at its premises in Livorno (Italy), with Università di Roma TorVergata (Rome, Italy) as sub-contractor and consultancy from KTH (Stockholm, Sweden), led to the identification of an innovative large deployable structure of tensegrity type, which achieves the required reliability because of a drastic reduction in the number of articulated joints in comparison with non-tensegrity architectures. The identified target application was in the field of large space antenna reflectors. The project focused on the overall architecture of a deployable system and the related design implications. With a view toward verifying experimentally the performance of the deployable structure, a reduced scale breadboard model was designed and manufactured. A gravity off-loading system was designed and implemented, so as to check deployment functionality in a 1-g environment. Finally, a test campaign was conducted, to validate the main design assumptions as well as to ensure the concept’s suitability for the selected target application. The test activities demonstrated satisfactory stiffness, deployment repeatability, and geometric precision in the fully deployed configuration. The test data were also used to validate a finite element model, which predicts a good static and dynamic behavior of the full-scale deployable structure.
  •  
6.
  • Zolesi, V. S., et al. (författare)
  • On an innovative deployment concept for large space structures
  • 2012
  • Ingår i: 42nd International Conference on Environmental Systems 2012, ICES 2012. - Reston, Virigina : American Institute of Aeronautics and Astronautics. - 9781600869341
  • Konferensbidrag (refereegranskat)abstract
    • Large deployable space structures are mission-critical technologies for which deployment failure cannot be an option. The difficulty to fully reproduce and test on ground the deployment of large systems dictates the need for extremely reliable architectural concepts. In 2010, ESA promoted a study focused at the pre-development of breakthrough architectural concepts offering superior reliability. The study, which was performed as an initiative of ESA Small Medium Enterprises Office (http://www.esa.int/SME/), by Kayser Italia at its premises in Livorno (Italy), with Universita' di Roma TorVergata (Rome, Italy) as sub-contractor and consultancy from KTH (Stockholm, Sweden), led to the identification of an innovative large deployable structure of "tensegrity" type, which achieves the required reliability because it permits a drastic reduction in the number of articulated joints in comparison with non-tensegrity architectures. The identified target application was in the field of large antenna reflectors. The project focused on the overall architecture of a deployable system and the related design implications. With a view toward verifying experimentally the performance of the deployable structure, a reduced-scale breadboard model was designed and manufactured. A gravity off-loading system was designed and implemented, so as to check deployment functionality in a 1-g environment. Finally, a test campaign was conducted, to validate the main design assumptions as well as to ensure the concept's suitability for the selected target application. The test activities demonstrated satisfactory stiffness, deployment repeatability, and geometric precision in the fully deployed configuration. The test data were also used to validate a finite element model, which predicts a good static and dynamic behavior of the full-scale deployable structure.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy