SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Guiriec Sylvain) "

Search: WFRF:(Guiriec Sylvain)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Burgess, J Michael, et al. (author)
  • Constraints on the Synchrotron Shock Model for the Fermi GRB 090820A Observed by Gamma-Ray Burst Monitor
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 741:1
  • Journal article (peer-reviewed)abstract
    • Discerning the radiative dissipation mechanism for prompt emission in gamma-ray bursts (GRBs) requires detailed spectroscopic modeling that straddles the vF(v) peak in the 100 keV-1 MeV range. Historically, empirical fits such as the popular Band function have been employed with considerable success in interpreting the observations. While extrapolations of the Band parameters can provide some physical insight into the emission mechanisms responsible for GRBs, these inferences do not provide a unique way of discerning between models. By fitting physical models directly, this degeneracy can be broken, eliminating the need for empirical functions; our analysis here offers a first step in this direction. One of the oldest, and leading, theoretical ideas for the production of the prompt signal is the synchrotron shock model. Here we explore the applicability of this model to a bright Fermi gamma-ray burst monitor (GBM) burst with a simple temporal structure, GRB 090820A. Our investigation implements, for the first time, thermal and non-thermal synchrotron emissivities in the RMFIT forward-folding spectral analysis software often used in GBM burst studies. We find that these synchrotron emissivities, together with a blackbody shape, provide at least as good a match to the data as the Band GRB spectral fitting function. This success is achieved in both time-integrated and time-resolved spectral fits.
  •  
2.
  • Goldstein, Adam, et al. (author)
  • The Fermi GBM Gamma-Ray Burst Spectral Catalog : The First Two Years
  • 2012
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 199:1
  • Journal article (peer-reviewed)abstract
    • We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
  •  
3.
  • Guiriec, Sylvain, et al. (author)
  • Detection of a thermal spectral component in the prompt emission of GRB 100724B
  • 2011
  • In: ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 727:2, s. L33-
  • Journal article (peer-reviewed)abstract
    • Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.
  •  
4.
  • Guiriec, Sylvain, et al. (author)
  • Time-resolved Spectroscopy of the Three Brightest and Hardest Short Gamma-ray Bursts Observed with the Fermi Gamma-ray Burst Monitor
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 725:1, s. 225-241
  • Journal article (peer-reviewed)abstract
    • From 2008 July to 2009 October, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has detected 320 gamma-ray bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power law with index ∼-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices (a) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched toward higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6MeV. In general, the hardness evolutions during the bursts follow their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises and confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.
  •  
5.
  • Li, Liang, et al. (author)
  • A Cosmological Fireball with 16% Gamma-Ray Radiative Efficiency
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. How efficiently the jet converts its energy to radiation is a long-standing problem, which is poorly constrained. The standard model invokes a relativistic fireball with a bright photosphere emission component. A definitive diagnosis of GRB radiation components and the measurement of GRB radiative efficiency require prompt emission and afterglow data, with high resolution and wide band coverage in time and energy. Here, we present a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its fluence is one of the highest for all the GRBs that have been detected so far, which allows us to perform a high-resolution study of the prompt emission spectral properties and their temporal evolutions, down to a timescale of about 0.1 s. We observe that each of the initial pulses has a thermal component contributing ∼20% of the total energy and that the corresponding temperature and inferred Lorentz factor of the photosphere evolve following broken power-law shapes. From the observation of the nonthermal spectra and the light curve, the onset of the afterglow corresponding to the deceleration of the fireball is considered to start at ∼6 s. By incorporating the thermal and nonthermal observations, as well as the photosphere and synchrotron radiative mechanisms, we can directly derive the fireball energy budget with little dependence on hypothetical parameters, measuring a ∼16% radiative efficiency for this GRB. With the fireball energy budget derived, the afterglow microphysics parameters can also be constrained directly from the data.
  •  
6.
  • Lin, Lin, et al. (author)
  • Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045
  • 2011
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 740:1
  • Journal article (peer-reviewed)abstract
    • The Swift/Burst Alert Telescope detected the first burst from 1E 1841-045 in 2010 May with intermittent burst activity recorded through at least 2011 July. Here we present Swift and Fermi/Gamma-ray Burst Monitor observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T 90 durations of the bursts range between 18 and 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) × 1038 erg, which is on the low side of soft gamma repeater bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in 1E 1841-045 might not involve large-scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.
  •  
7.
  • Paciesas, William S, et al. (author)
  • The Fermi GBM Gamma-Ray Burst Catalog : The First Two Years
  • 2012
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 199:1
  • Journal article (peer-reviewed)abstract
    • The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
  •  
8.
  • von Kienlin, Andreas, et al. (author)
  • The Second Fermi GBM Gamma-Ray Burst Catalog : The First Four Years
  • 2014
  • In: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 211:1
  • Journal article (peer-reviewed)abstract
    • This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view