SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Guo Yanan) "

Search: WFRF:(Guo Yanan)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fan, Yue, et al. (author)
  • Unveiling inflammatory and prehypertrophic cell populations as key contributors to knee cartilage degeneration in osteoarthritis using multi-omics data integration
  • 2024
  • In: Annals of the Rheumatic Diseases. - : BMJ Publishing Group Ltd. - 0003-4967 .- 1468-2060. ; 83:7, s. 926-944
  • Journal article (peer-reviewed)abstract
    • OBJECTIVES: Single-cell and spatial transcriptomics analysis of human knee articular cartilage tissue to present a comprehensive transcriptome landscape and osteoarthritis (OA)-critical cell populations.METHODS: Single-cell RNA sequencing and spatially resolved transcriptomic technology have been applied to characterise the cellular heterogeneity of human knee articular cartilage which were collected from 8 OA donors, and 3 non-OA control donors, and a total of 19 samples. The novel chondrocyte population and marker genes of interest were validated by immunohistochemistry staining, quantitative real-time PCR, etc. The OA-critical cell populations were validated through integrative analyses of publicly available bulk RNA sequencing data and large-scale genome-wide association studies.RESULTS: We identified 33 cell population-specific marker genes that define 11 chondrocyte populations, including 9 known populations and 2 new populations, that is, pre-inflammatory chondrocyte population (preInfC) and inflammatory chondrocyte population (InfC). The novel findings that make this an important addition to the literature include: (1) the novel InfC activates the mediator MIF-CD74; (2) the prehypertrophic chondrocyte (preHTC) and hypertrophic chondrocyte (HTC) are potentially OA-critical cell populations; (3) most OA-associated differentially expressed genes reside in the articular surface and superficial zone; (4) the prefibrocartilage chondrocyte (preFC) population is a major contributor to the stratification of patients with OA, resulting in both an inflammatory-related subtype and a non-inflammatory-related subtype.CONCLUSIONS: Our results highlight InfC, preHTC, preFC and HTC as potential cell populations to target for therapy. Also, we conclude that profiling of those cell populations in patients might be used to stratify patient populations for defining cohorts for clinical trials and precision medicine.
  •  
2.
  • Kristanl, Matej, et al. (author)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • In: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
3.
  • Li, Shu, et al. (author)
  • Comparative efficacy and safety of urate-lowering therapy for the treatment of hyperuricemia : a systematic review and network meta-analysis
  • 2016
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • The prevalence of hyperuricemia and gout has been increasing, but the comparative effectiveness and safety of different treatments remain uncertain. We aimed to compare the effectiveness and safety of different treatments for hyperuricemia using network meta-analysis methodology. We systematically reviewed fifteen randomized controlled trials (involving 7,246 patients through January 2016) that compared the effects of different urate-lowering drugs (allopurinol, benzbromarone, febuxostat, pegloticase and probenecid) on hyperuricemia. Drug efficacy and safety, as outcomes, were measured by whether the target level of serum urate acid was achieved and whether any adverse events occurred, respectively. We derived pooled effect sizes expressed as odds ratios (ORs) and 95% confidence intervals (CIs). The efficacy and safety of the drugs were ranked by cumulative ranking probabilities. Our findings show that febuxostat, benzbromarone, probenecid, pegloticase, and allopurinol were all highly effective at reducing the risk of hyperuricemia compared to placebo. Febuxostat had the best efficacy and safety compared to the other drugs. Furthermore, febuxostat 120 mg QD was more effective at achieving urate-lowering targets (OR: 0.17, 95% CI: 0.12-0.24) and safer (OR: 0.72, 95% CI: 0.56-0.91) than allopurinol.
  •  
4.
  • Liu, Li, et al. (author)
  • Involvement of yes-associated protein 1 activation in the matrix degradation of human-induced-pluripotent-stem-cell-derived chondrocytes induced by T-2 toxin and deoxynivalenol alone and in combination
  • 2024
  • In: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 25:2
  • Journal article (peer-reviewed)abstract
    • T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.
  •  
5.
  • Montazeri, Mohammad, et al. (author)
  • Direct Measure of Strain and Electronic Structure in GaAs/GaP Core-Shell Nanowires
  • 2010
  • In: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 10:3, s. 880-886
  • Journal article (peer-reviewed)abstract
    • Highly strained GaAs/GaP nanowires of excellent optical quality were grown with 50 nm diameter GaAs cores and 25 nm GaP shells. Photoluminescence from these nanowires is observed at energies dramatically shifted from the unstrained GaAs free exciton emission energy by 260 meV. Using Raman scattering, we show that it is possible to separately measure the degree of compressive and shear strain of the GaAs core and show that the Raman response of the GaP shell is consistent with tensile strain. The Raman and photoluminescence measurement are both on good agreement with 8 band k.p calculations, This result opens up new possibilities for engineering the electronic properties of the nanowires for optimal design of one-dimensional nanodevices by controlling the strain of the core and shell by varying the nanowire geometry.
  •  
6.
  • Ren, Yanan, et al. (author)
  • 3DOM-NiFe2O4 as an effective catalyst for turning CO2 and H2O into fuel (CH4)
  • 2018
  • In: Journal of Sol-Gel Science and Technology. - : SPRINGER. - 0928-0707 .- 1573-4846. ; 88:3, s. 489-496
  • Research review (peer-reviewed)abstract
    • Three-dimensional ordered macroporous NiFe2O4 (3DOM-NFO) powder was synthesized through the direct templating method combined with the sol-gel combustion technique. Polymethyl methacrylate (PMMA) spheres with different sizes were used as the hard templates. In order to understand the effect of PMMA spheres mean size on the structure and catalytic activity of synthesized 3DOM-NFO, the detailed characterization of the material was carried out by XRD, SEM, BET, XPS, UV-VIS, and DRS techniques. Direct hydrogeneration production of CH4 from CO2 and H2O was used to evaluate the catalysis performance of 3DOM-NFOs. The production of CH4 evolution can reach 1040.8mol/g at 350 degrees C and ambient pressure when 300nm template was used. It was concluded that the specific surface area and moderate concentration of oxygen vacancies are the crucial factors affecting the catalysis properties. Reasonably high turnover number of 0.244 and high CH4 conversion efficiency of 0.897% were obtained in this study. 3DOM-NFO can be a promising catalyst for hydrocarbon fuel production by directly using CO2 and H2O as the safe and cheap feedstocks. [GRAPHICS] .
  •  
7.
  • Rocafort, Mercedes, et al. (author)
  • Cell Wall Carbohydrate Dynamics during the Differentiation of Infection Structures by the Apple Scab Fungus, Venturia inaequalis
  • 2023
  • In: Microbiology Spectrum. - : American Society for Microbiology. - 2165-0497. ; 11:3
  • Journal article (peer-reviewed)abstract
    • Scab, caused by the biotrophic fungal pathogen Venturia inaequalis, is the most economically important disease of apples. During infection, V. inaequalis colonizes the subcuticular host environment, where it develops specialized infection structures called runner hyphae and stromata. These structures are thought to be involved in nutrient acquisition and effector (virulence factor) delivery, but also give rise to conidia that further the infection cycle. Despite their importance, very little is known about how these structures are differentiated. Likewise, nothing is known about how these structures are protected from host defenses or recognition by the host immune system. To better understand these processes, we first performed a glycosidic linkage analysis of sporulating tubular hyphae from V. inaequalis developed in culture. This analysis revealed that the V. inaequalis cell wall is mostly composed of glucans (44%) and mannans (37%), whereas chitin represents a much smaller proportion (4%). Next, we used transcriptomics and confocal laser scanning microscopy to provide insights into the cell wall carbohydrate composition of runner hyphae and stromata. These analyses revealed that, during subcuticular host colonization, genes of V. inaequalis putatively associated with the biosynthesis of immunogenic carbohydrates, such as chitin and b-1,6-glucan, are downregulated relative to growth in culture, while on the surface of runner hyphae and stromata, chitin is deacetylated to the less-immunogenic carbohydrate chitosan. These changes are anticipated to enable the subcuticular differentiation of runner hyphae and stromata by V. inaequalis, as well as to protect these structures from host defenses and recognition by the host immune system. IMPORTANCE Plant-pathogenic fungi are a major threat to food security. Among these are subcuticular pathogens, which often cause latent asymptomatic infections, making them difficult to control. A key feature of these pathogens is their ability to differentiate specialized subcuticular infection structures that, to date, remain largely understudied. This is typified by Venturia inaequalis, which causes scab, the most economically important disease of apples. In this study, we show that, during subcuticular host colonization, V. inaequalis downregulates genes associated with the biosynthesis of two immunogenic cell wall carbohydrates, chitin and b-1,6-glucan, and coats its subcuticular infection structures with a less-immunogenic carbohydrate, chitosan. These changes are anticipated to enable host colonization by V. inaequalis and provide a foundation for understanding subcuticular host colonization by other plant-pathogenic fungi. Such an understanding is important, as it may inform the development of novel control strategies against subcuticular plant-pathogenic fungi.
  •  
8.
  • Wang, Ying, et al. (author)
  • Screening for differentially expressed circRNA between Kashin–Beck disease and osteoarthritis patients based on circRNA chips
  • 2020
  • In: Clinica Chimica Acta. - : Elsevier. - 0009-8981 .- 1873-3492. ; 501, s. 92-101
  • Journal article (peer-reviewed)abstract
    • Objective: This research aims to explore differentially expressed circRNA between OA and KBD and potential diagnostic biomarkers.Methods: Total RNA was extracted from 5 pairs of KBD and OA knee joint cartilage specimens, and the expression of circRNAs was analyzed by Chip Scanning Analysis. The microarray data was verified by quantitative polymerase chain reaction (qRT-PCR). CircRNA-miRNA network was constructed to predict targeting microRNAs of circRNA genes. Peripheral blood samples from 25 KBD patients and 25 OA patients were collected for verification by qRT-PCR. Diagnostic value was evaluated by the area under the receiver operator characteristic (ROC) curve.Results: A total of 1627 circRNAs were differentially expressed between OA and KBD. Five bone and joint disease-related circRNAs were chosen for qRT-PCR validation. The difference in expression profile of hsa_circRNA_0020014 was confirmed by qRT-PCR, and its circRNA-miRNA regulation network was set up. The ROC curve demonstrated that hsa_circ_0020014_CBC1 in peripheral blood could distinguish patients with KBD and OA.Conclusion: The expression profiles of circRNA were significantly different between OA and KBD. hsa_circRNA_0020014 is a potential biomarker for differential diagnosis between these two diseases.
  •  
9.
  • Wang, Ying, et al. (author)
  • Screening for Differentially Expressed Circular RNAs in the Cartilage of Osteoarthritis Patients for Their Diagnostic Value
  • 2019
  • In: Genetic Testing and Molecular Biomarkers. - : Mary Ann Liebert. - 1945-0265 .- 1945-0257. ; 23:10, s. 706-716
  • Journal article (peer-reviewed)abstract
    • Background: Osteoarthritis (OA) is the most prevalent osteoarticular disease, which typically involves chronic cartilage degeneration and synovitis. The latest research shows that circular RNAs (circRNAs) play a role in the development of a variety of diseases, including osteoarthrosis.Purposes: The aim of this study was to explore the expression of circRNAs in OA chondrocytes and predict biomarkers for diagnosis.Materials and Methods: The circRNA expression profile was analyzed through use of the Gene Spring software V13.0; differentially expressed circRNAs were screened by comparing OA chondrocytes and normal articular chondrocytes. We validated the microarray data by quantitative real-time polymerase chain reaction analyses of OA chondrocytes and chondrocytes from normal controls. TargetScan software and miRanda software were used to predict networks of circRNA–miRNA interactions in cartilage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses were applied to predict the functions of differentially expressed circRNAs.Results: Overall, 1380 circRNAs were differentially expressed between OA chondrocytes and normal articular chondrocytes (fold-change ≥2, p ≤ 0.05), including 215 that were upregulated and 1165 that were downregulated circRNAs. After analyzing the differentially expressed circRNA genes, the top 20 enriched GO entries and KEGG pathways were annotated. The hsa_circrna_0032131 was identified for further analysis. A circRNA–miRNA network was constructed to represent the 10 most likely target genes associated with the validated circRNA.Conclusions: Our research suggests that some of the differentially expressed circRNAs in OA chondrocytes compared to normal chondrocytes are etiologically associated with the pathological process of OA. It was found that hsa_circRNA_0032131 likely participates in the initiation and progression of OA and has potential as a diagnostic marker.Clinical Relevance: To analyze the difference of circRNA expression profiles between OA and normal controls and explore biomarkers for diagnosis.
  •  
10.
  • Xiao, Tianxiao, et al. (author)
  • Autonomous self-healing hybrid energy harvester based on the combination of triboelectric nanogenerator and quantum dot solar cell
  • 2024
  • In: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 125
  • Journal article (peer-reviewed)abstract
    • Realization of multi-source energy harvesting with one single device would maximize power output. Thus, it is emerging as a promising strategy towards renewable energy generation and has attracted worldwide attention in the past decades. Capable of capturing mechanical energy that is ubiquitous in the ambient environment, triboelectric nanogenerator (TENG) has been considered a novel yet effective source towards next-generation energy harvesting. In this work, a flexible hybrid energy harvester (HEH) is developed via the rational integration of autonomous self-healing TENG and high bending-stable lead sulfide quantum dot (PbS QD) solar cell, enabling independent electricity generation by two different mechanisms. The single-electrode mode TENG component with self-healing is realized by a polydimethylsiloxane/Triton X-100 (PDMS/TX100) mixture as the dielectric layer and the shared gold (Au) electrode, which generates 0.39 µA of output current (Iout), 24.6 V of output voltages (Vout), 15.4 nC of transfer charges (Qsc), and 7.80 mW m−2 of output power peak density. The thin-film solar cell component is based on a PbS QD layer as the light absorber with a planar structure fabricated under low-cost and compatible conditions, achieving 22.8 mA cm−2 of short-circuit current density (Jsc) and 4.92% of power conversion efficiency (PCE). As a proof of concept, an electronic watch is successfully powered by harnessing ambient mechanical and solar energy with a hybridized energy cell. This approach will offer more opportunities to construct a versatile platform towards remote monitoring and smart home systems.
  •  
11.
  • Zhang, Feng'e, et al. (author)
  • Cytotoxic properties of HT-2 toxin in human chondrocytes : Could T3 inhibit toxicity of HT-2?
  • 2019
  • In: Toxins. - : MDPI. - 2072-6651. ; 11:11, s. E667-E667
  • Journal article (peer-reviewed)abstract
    • Thyroid hormone triiodothyronine (T3) plays an important role in coordinated endochondral ossification and hypertrophic differentiation of the growth plate, while aberrant thyroid hormone function appears to be related to skeletal malformations, osteoarthritis, and Kashin-Beck disease. The T-2 toxin, present extensively in cereal grains, and one of its main metabolites, HT-2 toxin, are hypothesized to be potential factors associated with hypertrophic chondrocyte-related osteochondropathy, known as the Kashin-Beck disease. In this study, we investigated the effects of T3 and HT-2 toxin on human chondrocytes. The immortalized human chondrocyte cell line, C-28/I2, was cultured in four different groups: controls, and cultures with T3, T3 plus HT-2 and HT-2 alone. Cytotoxicity was assessed using an MTT assay after 24-h-exposure. Quantitative RT-PCR was used to detect gene expression levels of collagen types II and X, aggrecan and runx2, and the differences in runx2 were confirmed with immunoblot analysis. T3 was only slightly cytotoxic, in contrast to the significant, dose-dependent cytotoxicity of HT-2 alone at concentrations ≥ 50 nM. T3, together with HT-2, significantly rescued the cytotoxic effect of HT-2. HT-2 induced significant increases in aggrecan and runx2 gene expression, while the hypertrophic differentiation marker, type X collagen, remained unchanged. Thus, T3 protected against HT-2 induced cytotoxicity, and HT-2 was an inducer of the pre-hypertrophic state of the chondrocytes.
  •  
12.
  • Zhang, Yanan, et al. (author)
  • Dysregulation of Cells Cycle and Apoptosis in Human Induced Pluripotent Stem Cells Chondrocytes Through p53 Pathway by HT-2 Toxin : An in vitro Study
  • 2021
  • In: Frontiers in Genetics. - : Frontiers Media S.A.. - 1664-8021. ; 12
  • Journal article (peer-reviewed)abstract
    • Kashin–Beck disease (KBD) mainly damages growth plate of adolescents and is susceptible to both gene and gene–environmental risk factors. HT-2 toxin, which is a primary metabolite of T-2 toxin, was regarded as one of the environmental risk factors of KBD. We used successfully generated KBD human induced pluripotent stem cells (hiPSCs) and control hiPSCs, which carry different genetic information. They have potential significance in exploring the effects of HT-2 toxin on hiPSC chondrocytes and interactive genes with HT-2 toxin for the purpose of providing a cellular disease model for KBD. In this study, we gave HT-2 toxin treatment to differentiating hiPSC chondrocytes in order to investigate the different responses of KBD hiPSC chondrocytes and control hiPSC chondrocytes to HT-2 toxin. The morphology of HT-2 toxin-treated hiPSC chondrocytes investigated by transmission electron microscope clearly showed that the ultrastructure of organelles was damaged and type II collagen expression in hiPSC chondrocytes was downregulated by HT-2 treatment. Moreover, dysregulation of cell cycle was observed; and p53, p21, and CKD6 gene expressions were dysregulated in hiPSC chondrocytes after T-2 toxin treatment. Flow cytometry also demonstrated that there were significantly increased amounts of late apoptotic cells in KBD hiPSC chondrocytes and that the mRNA expression level of Fas was upregulated. In addition, KBD hiPSC chondrocytes presented stronger responses to HT-2 toxin than control hiPSC chondrocytes. These findings confirmed that HT-2 is an environmental risk factor of KBD and that p53 pathway interacted with HT-2 toxin, causing damaged ultrastructure of organelles, accelerating cell cycle in G1 phase, and increasing late apoptosis in KBD hiPSC chondrocytes.
  •  
13.
  • Zhang, Yanan, et al. (author)
  • Identifying discriminative features for diagnosis of Kashin-Beck disease among adolescents
  • 2021
  • In: BMC Musculoskeletal Disorders. - : BioMed Central. - 1471-2474. ; 22:1
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Diagnosing Kashin-Beck disease (KBD) involves damages to multiple joints and carries variable clinical symptoms, posing great challenge to the diagnosis of KBD for clinical practitioners. However, it is still unclear which clinical features of KBD are more informative for the diagnosis of Kashin-Beck disease among adolescent.METHODS: We first manually extracted 26 possible features including clinical manifestations, and pathological changes of X-ray images from 400 KBD and 400 non-KBD adolescents. With such features, we performed four classification methods, i.e., random forest algorithms (RFA), artificial neural networks (ANNs), support vector machines (SVMs) and linear regression (LR) with four feature selection methods, i.e., RFA, minimum redundancy maximum relevance (mRMR), support vector machine recursive feature elimination (SVM-RFE) and Relief. The performance of diagnosis of KBD with respect to different classification models were evaluated by sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve (AUC).RESULTS: Our results demonstrated that the 10 out of 26 discriminative features were displayed more powerful performance, regardless of the chosen of classification models and feature selection methods. These ten discriminative features were distal end of phalanges alterations, metaphysis alterations and carpals alterations and clinical manifestations of ankle joint movement limitation, enlarged finger joints, flexion of the distal part of fingers, elbow joint movement limitation, squatting limitation, deformed finger joints, wrist joint movement limitation.CONCLUSIONS: The selected ten discriminative features could provide a fast, effective diagnostic standard for KBD adolescents.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view