SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guo Yuming) "

Sökning: WFRF:(Guo Yuming)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Armstrong, Ben, et al. (författare)
  • The Role of Humidity in Associations of High Temperature with Mortality : A Multicountry, Multicity Study
  • 2019
  • Ingår i: Journal of Environmental Health Perspectives. - : The National Institute of Environmental Health Sciences. - 0091-6765 .- 1552-9924. ; 127:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is strong experimental evidence that physiologic stress from high temperatures is greater if humidity is higher. However, heat indices developed to allow for this have not consistently predicted mortality better than dry-bulb temperature.Objectives: We aimed to clarify the potential contribution of humidity an addition to temperature in predicting daily mortality in summer by using a large multicountry dataset.Methods: In 445 cities in 24 countries, we fit a time-series regression model for summer mortality with a distributed lag nonlinear model (DLNM) for temperature (up to lag 3) and supplemented this with a range of terms for relative humidity (RH) and its interaction with temperature. City-specific associations were summarized using meta-analytic techniques.Results: Adding a linear term for RH to the temperature term improved fit slightly, with an increase of 23% in RH (the 99th percentile anomaly) associated with a 1.1% [95% confidence interval (CI): 0.8, 1.3] decrease in mortality. Allowing curvature in the RH term or adding terms for interaction of RH with temperature did not improve the model fit. The humidity-related decreased risk was made up of a positive coefficient at lag 0 outweighed by negative coefficients at lags of 1–3 d. Key results were broadly robust to small model changes and replacing RH with absolute measures of humidity. Replacing temperature with apparent temperature, a metric combining humidity and temperature, reduced goodness of fit slightly.Discussion:The absence of a positive association of humidity with mortality in summer in this large multinational study is counter to expectations from physiologic studies, though consistent with previous epidemiologic studies finding little evidence for improved prediction by heat indices. The result that there was a small negative average association of humidity with mortality should be interpreted cautiously; the lag structure has unclear interpretation and suggests the need for future work to clarify.
  •  
2.
  • Chen, Gongbo, et al. (författare)
  • Mortality risk attributable to wildfire-related PM2·5 pollution : a global time series study in 749 locations
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:9, s. e579-e587
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world.METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated.FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period.INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.
  •  
3.
  • Chen, Kai, et al. (författare)
  • Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities
  • 2021
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 5:4, s. e191-e199
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. Methods: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure–response curve and evaluated the possibility of a threshold below which health is not affected. Findings: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32–1·50) increase in daily total mortality. The pooled exposure–response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure–response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. Interpretation: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. Funding: EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council.
  •  
4.
  • Choi, Hayon Michelle, et al. (författare)
  • Effect modification of greenness on the association between heat and mortality : A multi-city multi-country study
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 84
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting.METHODS: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations.FINDINGS: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries.INTERPRETATION: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change.FUNDING: This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033 The funders had no role in the design, data collection, analysis, interpretation of results, manuscript writing, or decision to publication.
  •  
5.
  • Domingo, Nina G.G., et al. (författare)
  • Ozone-related acute excess mortality projected to increase in the absence of climate and air quality controls consistent with the Paris Agreement
  • 2024
  • Ingår i: One Earth. - : Elsevier. - 2590-3330 .- 2590-3322. ; 7:2, s. 325-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.
  •  
6.
  • Gasparrini, Antonio, et al. (författare)
  • Mortality risk attributable to high and low ambient temperature : a multicountry observational study
  • 2015
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 386:9991, s. 369-375
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Although studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures.METHODS: We collected data for 384 locations in Australia, Brazil, Canada, China, Italy, Japan, South Korea, Spain, Sweden, Taiwan, Thailand, UK, and USA. We fitted a standard time-series Poisson model for each location, controlling for trends and day of the week. We estimated temperature-mortality associations with a distributed lag non-linear model with 21 days of lag, and then pooled them in a multivariate metaregression that included country indicators and temperature average and range. We calculated attributable deaths for heat and cold, defined as temperatures above and below the optimum temperature, which corresponded to the point of minimum mortality, and for moderate and extreme temperatures, defined using cutoffs at the 2·5th and 97·5th temperature percentiles.FINDINGS: We analysed 74 225 200 deaths in various periods between 1985 and 2012. In total, 7·71% (95% empirical CI 7·43-7·91) of mortality was attributable to non-optimum temperature in the selected countries within the study period, with substantial differences between countries, ranging from 3·37% (3·06 to 3·63) in Thailand to 11·00% (9·29 to 12·47) in China. The temperature percentile of minimum mortality varied from roughly the 60th percentile in tropical areas to about the 80-90th percentile in temperate regions. More temperature-attributable deaths were caused by cold (7·29%, 7·02-7·49) than by heat (0·42%, 0·39-0·44). Extreme cold and hot temperatures were responsible for 0·86% (0·84-0·87) of total mortality.INTERPRETATION: Most of the temperature-related mortality burden was attributable to the contribution of cold. The effect of days of extreme temperature was substantially less than that attributable to milder but non-optimum weather. This evidence has important implications for the planning of public-health interventions to minimise the health consequences of adverse temperatures, and for predictions of future effect in climate-change scenarios.FUNDING: UK Medical Research Council.
  •  
7.
  • Gasparrini, Antonio, et al. (författare)
  • Projections of temperature-related excess mortality under climate change scenarios
  • 2017
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 1:9, s. e360-e367
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes.Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.
  •  
8.
  • Guo, Yuming, et al. (författare)
  • Quantifying excess deaths related to heatwaves under climate change scenarios : A multicountry time series modelling study
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited.METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections.CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.
  •  
9.
  • Lee, Jae Young, et al. (författare)
  • Predicted temperature-increase-induced global health burden and its regional variability
  • 2019
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010-2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (-0.92%p/°C) and Australia (-0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population.
  •  
10.
  • Lee, Whanhee, et al. (författare)
  • Mortality burden of diurnal temperature range and its temporal changes : a multi-country study
  • 2018
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 110, s. 123-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Although diurnal temperature range (DTR) is a key index of climate change, few studies have reported the health burden of DTR and its temporal changes at a multi-country scale. Therefore, we assessed the attributable risk fraction of DTR on mortality and its temporal variations in a multi-country data set. We collected time-series data covering mortality and weather variables from 308 cities in 10 countries from 1972 to 2013. The temporal change in DTR-related mortality was estimated for each city with a time-varying distributed lag model. Estimates for each city were pooled using a multivariate meta-analysis. The results showed that the attributable fraction of total mortality to DTR was 2.5% (95% eCI: 2.3-2.7%) over the entire study period. In all countries, the attributable fraction increased from 2.4% (2.1-2.7%) to 2.7% (2.4-2.9%) between the first and last study years. This study found that DTR has significantly contributed to mortality in all the countries studied, and this attributable fraction has significantly increased over time in the USA, the UK, Spain, and South Korea. Therefore, because the health burden of DTR is not likely to reduce in the near future, countermeasures are needed to alleviate its impact on human health.
  •  
11.
  • Liu, Cong, et al. (författare)
  • Ambient Particulate Air Pollution and Daily Mortality in 652 Cities
  • 2019
  • Ingår i: New England Journal of Medicine. - Waltham : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 381:8, s. 705-715
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias.METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived.RESULTS: On average, an increase of 10 μg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations.CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.).
  •  
12.
  • Liu, Cong, et al. (författare)
  • Coarse particulate air pollution and daily mortality : a global study in 205 cities
  • 2022
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : American Thoracic Society. - 1073-449X .- 1535-4970. ; 206:8, s. 999-1007
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: The associations between ambient coarse particulate matter (PM2.5-10) and daily mortality is not fully understood at a global scale.OBJECTIVES: To evaluate the short-term associations between PM2.5-10 and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide.METHODS: We collected daily mortality (total, cardiovascular, respiratory) and air pollution data from 205 cities in 20 countries/regions. Concentrations of PM2.5-10 were computed as the difference between inhalable and fine particulate matter. A two-stage time-series analytic approach was applied, with over-dispersed generalized linear models and multilevel meta-analysis. We fitted two-pollutant models to test the independent effect of PM2.5-10 from co-pollutants (fine particulate matter, nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide). Exposure-response relationship curves were pooled and regional analyses were conducted.MEASUREMENTS AND MAIN RESULTS: A 10 μg/m3 increase in PM2.5-10 concentration on lag 0-1 day was associated with increments of 0.51% (95% confidence interval [CI]: 0.18%, 0.84%), 0.43% (95%CI: 0.15%, 0.71%) and 0.41% (95%CI: 0.06%, 0.77%) in total, cardiovascular, and respiratory mortality, respectively. The associations varied by country and region. These associations were robust to adjustment by all co-pollutants in two-pollutant models, especially for PM2.5. The exposure-response curves for total, cardiovascular, and respiratory mortality were positive, with steeper slopes at lower exposure ranges and without discernible thresholds.CONCLUSIONS: This study provides novel global evidence on the robust and independent associations between short-term exposure to ambient PM2.5-10 and total, cardiovascular and respiratory mortality, suggesting the need to establish a unique guideline or regulatory limit for daily concentrations of PM2.5-10.
  •  
13.
  • Masselot, Pierre, et al. (författare)
  • Differential mortality risks associated with PM2.5 components : a multi-country, multi-city study
  • 2022
  • Ingår i: Epidemiology. - : Wolters Kluwer. - 1044-3983 .- 1531-5487. ; 33:2, s. 167-175
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality.METHODS: We applied a two-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators.RESULTS: We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95%CI: 1.0030-1.0097) to 1.0102 (95%CI:1.0070-1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95%CI: 1.0067-1.0133) to 1.0037 (95%CI: 0.9998- 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk.CONCLUSIONS: These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components.
  •  
14.
  • Meng, Xia, et al. (författare)
  • Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality : multilocation analysis in 398 cities.
  • 2021
  • Ingår i: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833. ; 372
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol.DESIGN: Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis.SETTING: 398 cities in 22 low to high income countries/regions.MAIN OUTCOME MEASURES: Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018.RESULTS: On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities.CONCLUSIONS: This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.
  •  
15.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
16.
  • Rai, Masna, et al. (författare)
  • Heat-related cardiorespiratory mortality : effect modification by air pollution across 482 cities from 24 countries
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 174
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries.Methods: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model.Results: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6–7.7), 11.3% (95%CI 11.2–11.3), and 14.3% (95% CI 14.1–14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5–1.6), 5.1 (95%CI 5.1–5.2), and 8.7 (95%CI 8.7–8.8) at low, medium, and high levels of O3, respectively.Discussion: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.
  •  
17.
  • Sera, Francesco, et al. (författare)
  • How urban characteristics affect vulnerability to heat and cold : a multi-country analysis
  • 2019
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press. - 0300-5771 .- 1464-3685. ; 48:4, s. 1101-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The health burden associated with temperature is expected to increase due to a warming climate. Populations living in cities are likely to be particularly at risk, but the role of urban characteristics in modifying the direct effects of temperature on health is still unclear. In this contribution, we used a multi-country dataset to study effect modification of temperature-mortality relationships by a range of city-specific indicators.METHODS: We collected ambient temperature and mortality daily time-series data for 340 cities in 22 countries, in periods between 1985 and 2014. Standardized measures of demographic, socio-economic, infrastructural and environmental indicators were derived from the Organisation for Economic Co-operation and Development (OECD) Regional and Metropolitan Database. We used distributed lag non-linear and multivariate meta-regression models to estimate fractions of mortality attributable to heat and cold (AF%) in each city, and to evaluate the effect modification of each indicator across cities.RESULTS: Heat- and cold-related deaths amounted to 0.54% (95% confidence interval: 0.49 to 0.58%) and 6.05% (5.59 to 6.36%) of total deaths, respectively. Several city indicators modify the effect of heat, with a higher mortality impact associated with increases in population density, fine particles (PM2.5), gross domestic product (GDP) and Gini index (a measure of income inequality), whereas higher levels of green spaces were linked with a decreased effect of heat.CONCLUSIONS: This represents the largest study to date assessing the effect modification of temperature-mortality relationships. Evidence from this study can inform public-health interventions and urban planning under various climate-change and urban-development scenarios.
  •  
18.
  • Tobías, Aurelio, et al. (författare)
  • Geographical Variations of the Minimum Mortality Temperature at a Global Scale : A Multicountry Study
  • 2021
  • Ingår i: Environmental epidemiology. - : Wolters Kluwer. - 2474-7882. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale.Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators.Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD.Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.
  •  
19.
  • Vicedo-Cabrera, Ana M, et al. (författare)
  • Short term association between ozone and mortality : global two stage time series study in 406 locations in 20 countries
  • 2020
  • Ingår i: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833. ; 368
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide.DESIGN: Two stage time series analysis.SETTING: 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network.POPULATION: Deaths for all causes or for external causes only registered in each city within the study period.MAIN OUTCOME MEASURES: Daily total mortality (all or non-external causes only).RESULTS: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively.CONCLUSIONS: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.
  •  
20.
  • Wang, Fang, et al. (författare)
  • Emerging contaminants: A One Health perspective
  • 2024
  • Ingår i: Innovation. - 2666-6758. ; 5
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
  •  
21.
  • Wen, Bo, et al. (författare)
  • Comparison for the effects of different components of temperature variability on mortality : A multi-country time-series study
  • 2024
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. Objectives: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality.Methods: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates.Results: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0–7 (0.9 °C). An IQR increase in inter-day TV0–7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0–7 and inter-day TV0–7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type.Conclusions: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.
  •  
22.
  • Wu, Yao, et al. (författare)
  • Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19 : a three-stage modelling study
  • 2022
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 6:5, s. e410-e421
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000–19.Methods: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000–19. Temperature variability was calculated as the SD of the average of the same and previous days’ minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades.Findings: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901–2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2–4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7–5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3–10·4), followed by Europe (4·4%, 2·2–5·6) and Africa (3·3, 1·9–4·6).Interpretation: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. Funding: Australian Research Council, Australian National Health & Medical Research Council.
  •  
23.
  • Zhao, Qi, et al. (författare)
  • Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019 : a three-stage modelling study
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:7, s. e415-e425
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures.METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division.FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe.INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios.
  •  
24.
  • Chen, Gongbo, et al. (författare)
  • All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone : a multicountry two-stage time series analysis
  • 2024
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 8:7, s. e452-e462
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally.Methods: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25° × 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0–2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels.Findings: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 μg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 μg/m3 in the mean daily concentration of wildfire-related O3 during lag 0–2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (–0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (–0·10 to 0·91; 5249 [–1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3.Interpretation: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires.
  •  
25.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
26.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of stroke and its risk factors, 1990-2019 : a systematic analysis for the Global Burden of Disease Study 2019
  • 2021
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 20:10, s. 795-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% [10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% [5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million [6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million [2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million [1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million [67.7-90.8] DALYs or 55.5% [48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million [22.3-48.6] DALYs or 24.3% [15.7-33.2]), high fasting plasma glucose (28.9 million [19.8-41.5] DALYs or 20.2% [13.8-29.1]), ambient particulate matter pollution (28.7 million [23.4-33.4] DALYs or 20.1% [16.6-23.0]), and smoking (25.3 million [22.6-28.2] DALYs or 17.6% [16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.
  •  
27.
  •  
28.
  • Gao, Yuan, et al. (författare)
  • Global, regional, and national burden of mortality associated with cold spells during 2000-19 : a three-stage modelling study
  • 2024
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 8:2, s. e108-e116
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells.Methods: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world.Findings: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones.Interpretation: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells.
  •  
29.
  • Griswold, Max G., et al. (författare)
  • Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 392:10152, s. 1015-1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older.Methods: Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health.Findings: Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week.Interpretation: Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.
  •  
30.
  • Kassebaum, Nicholas J., et al. (författare)
  • Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1603-1658
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs off set by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2.9 years (95% uncertainty interval 2.9-3.0) for men and 3.5 years (3.4-3.7) for women, while HALE at age 65 years improved by 0.85 years (0.78-0.92) and 1.2 years (1.1-1.3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum.
  •  
31.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
32.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
33.
  • Tang, Ailing, et al. (författare)
  • Simultaneously Achieved High Open-Circuit Voltage and Efficient Charge Generation by Fine-Tuning Charge-Transfer Driving Force in Nonfullerene Polymer Solar Cells
  • 2018
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 28:6
  • Tidskriftsartikel (refereegranskat)abstract
    • To maximize the short-circuit current density (J(SC)) and the open circuit voltage (V-OC) simultaneously is a highly important but challenging issue in organic solar cells (OSCs). In this study, a benzotriazole-based p-type polymer (J61) and three benzotriazole-based nonfullerene small molecule acceptors (BTA1-3) are chosen to investigate the energetic driving force for the efficient charge transfer. The lowest unoccupied molecular orbital (LUMO) energy levels of small molecule acceptors can be fine-tuned by modifying the end-capping units, leading to high V-OC (1.15-1.30 V) of OSCs. Particularly, the LUMO energy level of BTA3 satisfies the criteria for efficient charge generation, which results in a high V-OC of 1.15 V, nearly 65% external quantum efficiency, and a high power conversion efficiency (PCE) of 8.25%. This is one of the highest V-OC in the high-performance OSCs reported to date. The results imply that it is promising to achieve both high J(SC) and V-OC to realize high PCE with the carefully designed nonfullerene acceptors.
  •  
34.
  • Wu, Yao, et al. (författare)
  • Fluctuating temperature modifies heat-mortality association around the globe
  • 2022
  • Ingår i: The Innovation. - : Cell Press. - 2666-6758. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34
Typ av publikation
tidskriftsartikel (33)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (34)
Författare/redaktör
Guo, Yuming (33)
Bell, Michelle L (26)
Gasparrini, Antonio (24)
Lavigne, Eric (24)
Schwartz, Joel (22)
Sera, Francesco (22)
visa fler...
Kan, Haidong (22)
Hashizume, Masahiro (21)
Íñiguez, Carmen (20)
Kim, Ho (20)
Honda, Yasushi (19)
Ragettli, Martina S (19)
Åström, Christofer, ... (17)
Orru, Hans (17)
Pascal, Mathilde (16)
Armstrong, Ben (16)
Kyselý, Jan (16)
Vicedo-Cabrera, Ana ... (15)
Forsberg, Bertil, pr ... (14)
Katsouyanni, Klea (14)
Dang, Tran Ngoc (12)
Scortichini, Matteo (11)
Forsberg, Bertil (10)
Michelozzi, Paola (10)
Indermitte, Ene (10)
Chen, Bing-Yu (9)
Guo, Yue-Liang Leon (9)
Ortega, Nicolás Vald ... (9)
Koyanagi, Ai (8)
Bensenor, Isabela M. (8)
Feigin, Valery L. (8)
Hamidi, Samer (8)
Jonas, Jost B. (8)
Malekzadeh, Reza (8)
Mokdad, Ali H. (8)
Naghavi, Mohsen (8)
Sepanlou, Sadaf G. (8)
Tran, Bach Xuan (8)
Yonemoto, Naohiro (8)
Murray, Christopher ... (8)
Bennett, Derrick A. (8)
Majeed, Azeem (8)
Mirrakhimov, Erkin M ... (8)
Santos, Itamar S. (8)
Venketasubramanian, ... (8)
Analitis, Antonis (8)
Gupta, Rajeev (8)
Abrutzky, Rosana (8)
de Sousa Zanotti Sta ... (8)
Goodman, Patrick (8)
visa färre...
Lärosäte
Umeå universitet (29)
Karolinska Institutet (9)
Högskolan Dalarna (8)
Lunds universitet (6)
Chalmers tekniska högskola (5)
Uppsala universitet (4)
visa fler...
Göteborgs universitet (3)
Södertörns högskola (2)
Stockholms universitet (1)
Linköpings universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (31)
Naturvetenskap (7)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy