SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gustavsson Martin 1984 ) "

Sökning: WFRF:(Gustavsson Martin 1984 )

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fridén, Mikael E, 1984-, et al. (författare)
  • Evaluation and analysis of environmentally sustainable methodologies for extraction of betulin from birch bark with a focus on industrial feasibility
  • 2016
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 18:2, s. 516-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Betulin from birch bark was extracted using two principally different extraction methodologies - classical Reflux Boiling (RB) and Pressurized Liquid Extraction (PLE). The extraction methods were analyzed based on both recovery and purity as well as for RB industrial feasibility. The purity and recovery for the different extraction methods were analyzed using High Performance Liquid Chromatography (HPLC) coupled with three different detection principles: Diode Array Detection (DAD), Mass Spectrometry (MS) and Charged Aerosol Detection (CAD). The chromatographic purity was determined by all detections whereas the DAD was used also for complementary gravimetric calculations of the purity of the extracts. The MS detection (in MS and MS/MS modes) was mainly used to characterize the impurities. Two steps to increase the purity of RB extracts were evaluated - pre-boiling the bark in water and precipitation by adding water to the extract. Finally, the methods were compared in terms of amounts of betulin produced and solvent consumed. The RB method including a precipitation step produced the highest purity of betulin. However, results indicate that PLE using three cycles with the precipitation step gives similar purities as for RB. The PLE method produced up to 1.6 times higher amount of extract compared to the RB method. However, the solvent consumption (liter solvent per gram product) for PLE was around 4.5 times higher as compared to the classical RB. PLE performed with only one extraction cycle gave results more similar to RB with 1.2 times higher yield and 1.4 times higher solvent consumption. The RB process was investigated on an industrial scale using a model approach and several important key-factors could be identified. The most energy demanding step was the recycling of extraction solvent which motivates that solvent consumption should be kept low and calculations show a great putative energy reduction by decreasing the ethanol concentration used in the RB process to lower than 90%.
  •  
2.
  •  
3.
  • Cheon, Seungwoo, et al. (författare)
  • Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels
  • 2016
  • Ingår i: Current opinion in chemical biology. - : Elsevier. - 1367-5931 .- 1879-0402. ; 35, s. 10-21
  • Tidskriftsartikel (refereegranskat)abstract
    • As climate change has become one of the major global risks, our heavy dependence on petroleum-derived fuels has received much public attention. To solve such problems, production of sustainable fuels has been intensively studied over the past years. Thanks to recent advances in synthetic biology and metabolic engineering technologies, bio-based platforms for advanced biofuels production have been developed using various microorganisms. The strategies for production of advanced biofuels have converged upon four major metabolic routes: the 2-ketoacid pathway, the fatty acid synthesis (FAS) pathway, the isoprenoid pathway, and the reverse β-oxidation pathway. Additionally, the polyketide synthesis pathway has recently been attracting interest as a promising alternative biofuel production route. In this article, recent trends in advanced biofuels production are reviewed by categorizing them into three types of advanced biofuels: alcohols, biodiesel and jet fuel, and gasoline. Focus is given on the strategies of employing synthetic biology and metabolic engineering for the development of microbial strains producing advanced fuels. Finally, the prospects for future advances needed to achieve much more efficient bio-based production of advanced biofuels are discussed, focusing on designing advanced biofuel production pathways coupled with screening, modifying, and creating novel enzymes.
  •  
4.
  • Chung, Hannah, et al. (författare)
  • Bio-based production of monomers and polymers by metabolically engineered microorganisms
  • 2015
  • Ingår i: Current Opinion in Biotechnology. - : Elsevier. - 0958-1669 .- 1879-0429. ; 36, s. 73-84
  • Forskningsöversikt (refereegranskat)abstract
    • Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased.
  •  
5.
  • Guevara-Martínez, Mónica, 1989-, et al. (författare)
  • The role of the acyl-CoA thioesterase YciA in the production of (R)-3-hydroxybutyrate by recombinant Escherichia coli
  • 2019
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer. - 0175-7598 .- 1432-0614. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.
  •  
6.
  • Gustavsson, Martin, 1984-, et al. (författare)
  • Biocatalysis on the surface of Escherichia coli : melanin pigmentation of the cell exterior
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface. As a proof-of-concept, we used the AIDA autotransporter vehicle for Escherichia coli surface expression of tyrosinase and fully oxidized externally added tyrosine to the biopolymer melanin. This resulted in a color change and creation of a black cell exterior. The capture of ninety percent of a pharmaceutical wastewater pollutant followed by regeneration of the cell bound melanin matrix through a simple pH change, shows the superior function and facilitated processing provided by the surface methodology. The broad adsorption spectrum of melanin could also allow removal of other micropollutants.
  •  
7.
  • Gustavsson, Martin, 1984- (författare)
  • Influence of recombinant passenger properties and process conditions on surface expression using the AIDA-I autotransporter
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Surface expression has attracted much recent interest, and it has been suggested for a variety of applications. Two such applications are whole-cell biocatalysis and the creation of live vaccines. For successful implementation of these applications there is a need for flexible surface expression systems that can yield a high level of expression with a variety of recombinant fusion proteins. The aim of this work was thus to create a surface expression system that would fulfil these requirements. A novel surface expression system based on the AIDA-I autotransporter was created with the key qualities being are good, protein-independent detection of the expression through the presence of two epitope tags flanking the recombinant protein, and full modularity of the different components of the expression cassette. To evaluate the flexibility of this construct, 8 different model proteins with potential use as live-vaccines or biocatalysts were expressed and their surface expression levels were analysed. Positive signals were detected for all of the studied proteins using antibody labelling followed by flow cytometric analysis, showing the functionality of the expression system. The ratio of the signal from the two epitope tags indicated that several of the studied proteins were present mainly in proteolytically degraded forms, which was confirmed by Western blot analysis of the outer membrane protein fraction. This proteolysis was suggested to be due to protein-dependent stalling of translocation intermediates in the periplasm, with indications that larger size and higher cysteine content had a negative impact on expression levels. Process design with reduced cultivation pH and temperature was used to increase total surface expression yield of one of the model proteins by 400 %, with a simultaneous reduction of proteolysis by a third. While not sufficient to completely remove proteolysis, this shows that process design can be used to greatly increase surface expression. Thus, it is recommended that future work combine this with engineering of the bacterial strain or the expression system in order to overcome the observed proteolysis and maximise the yield of surface expressed protein.
  •  
8.
  • Gustavsson, Martin, 1984-, et al. (författare)
  • Prospects of microbial cell factories developed through systems metabolic engineering
  • 2016
  • Ingår i: Microbial Biotechnology. - : John Wiley & Sons. - 1751-7907 .- 1751-7915. ; 9:5, s. 610-617
  • Tidskriftsartikel (refereegranskat)abstract
    • While academic-level studies on metabolic engineering of microorganisms for production of chemicals and fuels are ever growing, a significantly lower number of such production processes have reached commercial-scale. In this work, we review the challenges associated with moving from laboratory-scale demonstration of microbial chemical or fuel production to actual commercialization, focusing on key requirements on the production organism that need to be considered during the metabolic engineering process. Metabolic engineering strategies should take into account techno-economic factors such as the choice of feedstock, the product yield, productivity and titre, and the cost effectiveness of midstream and downstream processes. Also, it is important to develop an industrial strain through metabolic engineering for pathway construction and flux optimization together with increasing tolerance to products and inhibitors present in the feedstock, and ensuring genetic stability and strain robustness under actual fermentation conditions.
  •  
9.
  • Gustavsson, Martin, 1984-, et al. (författare)
  • Surface Expression of omega-Transaminase in Escherichia coli
  • 2014
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 80:7, s. 2293-2298
  • Tidskriftsartikel (refereegranskat)abstract
    • Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus omega-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.
  •  
10.
  • Gustavsson, Martin, 1984- (författare)
  • Surface expression using the AIDA autotransporter : Towards live vaccines and whole-cell biocatalysis
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The area of surface expression has gathered a lot of interest from research groups all over the world and much work is performed in the area. Autotransporters have been used for surface expression in Gram-negative bacteria. One of the more commonly used autotransporters is the Adhesin Involved in Diffuse Adherence (AIDA) of pathogenic Escherichia coli. The surface expression of enzymes and vaccine epitopes offer several advantages. Surface expressed enzymes gain similar properties to immobilised enzymes, mainly simplified handling and separation using centrifugation. Surface expressed vaccine epitopes can have longer half-lives inside the animal that is to be immunized and surface groups on the host cell can act as adjuvants, increasing the immune response and leading to a better immunisation.    However, while much basic research is directed towards mechanisms of surface expression using autotransporters there are few reports regarding production of surface expressed protein. Thus the aim of this work was the optimisation of the yield and productivity of surface expressed protein. Protein Z, an IgG-binding domain of Staphylococcal protein A, was used as a model protein for the investigation of which cultivation parameters influenced surface expression. The choice of cultivation medium gave the largest impact on expression, which was attributed to effects based on the induction of the native promoter of AIDA. The AIDA system was then used for the expression of two Salmonella surface proteins, SefA and H:gm, with potential for use as vaccine epitopes. SefA was verified located on the cell surface, and H:gm was found in the outer membrane of the host cell, though only in proteolytically truncated forms lacking the His6-tag used for detection. This proteolysis persisted in E. coli strains deficient for the outer membrane protease OmpT and was concluded to be dependent on other proteases. The removal of proteolysis and further optimisation of the yield of surface-expressed protein are important goals of further work.
  •  
11.
  • Hörnström, David, et al. (författare)
  • Molecular optimization of autotransporter-based tyrosinase surface display
  • 2019
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : ELSEVIER SCIENCE BV. - 0005-2736 .- 1879-2642. ; 1862:2, s. 486-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Display of recombinant enzymes on the cell surface of Gram-negative bacteria is a desirable feature with applications in whole-cell biocatalysis, affinity screening and degradation of environmental pollutants. One common technique for recombinant protein display on the Escherichia colt surface is autotransport. Successful autotransport of an enzyme largely depends on the following: (1) the size, sequence and structure of the displayed protein, (2) the cultivation conditions, and (3) the choice of the autotransporter expression system. Common problems with autotransporter-mediated surface display include low expression levels and truncated fusion proteins, which both limit the cell-specific activity. The present study investigated an autotransporter expression system for improved display of tyrosinase on the surface of E. coli by evaluating different variants of the autotransporter vector including: promoter region, signal peptide, the recombinant passenger, linker regions, and the autotransporter translocation unit itself. The impact of these changes on translocation to the cell surface was monitored by the cell-specific activity as well as antibody-based flow cytometric analysis of full-length and degraded passenger. Applying these strategies, the amount of displayed full-length tyrosinase on the cell surface was increased, resulting in an overall 5-fold increase of activity as compared to the initial autotransport expression system. Surprisingly, heterologous expression using 7 different translocation units all resulted in functional expression and only differed 1.6-fold in activity. This study provides a basis for broadening of the range of proteins that can be surface displayed and the development of new autotransporter-based processes in industrial-scale whole-cell biocatalysis.
  •  
12.
  • Jarmander, Johan, 1983-, et al. (författare)
  • A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli
  • 2012
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H: gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results: The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His(6)-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H: gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His(6)-tag facing the medium. Conclusions: Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His(6)-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis.
  •  
13.
  • Lindroos, Magnus, et al. (författare)
  • Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor
  • 2019
  • Ingår i: Journal of Hazardous Materials. - : ELSEVIER SCIENCE BV. - 0304-3894 .- 1873-3336. ; 365, s. 74-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine. This work explores the suitability of these melanin-covered E. coli for the continuous removal of pharmaceuticals from wastewater. A continuous-flow membrane bioreactor containing melanized E. coli cells was used for adsorption of chloroquine from the influent until saturation and subsequent regeneration. At a low loading of cells (10 g/L) and high influent concentration of chloroquine (0.1 mM), chloroquine adsorbed until saturation after 26 +/- 2 treated reactor volumes (39 +/- 3 L). The average effluent concentration during the first 20 h was 0.0018 mM, corresponding to 98.2% removal. Up to 140 +/- 6 mg chloroquine bound per gram of cells following mixed homo- and heterogeneous adsorption kinetics. In situ low pH regeneration released all chloroquine without apparent capacity loss over three consecutive cycles. This shows the potential of melanized cells for treatment of conventional wastewater or highly concentrated upstream sources such as hospitals or manufacturing sites.
  •  
14.
  • Ljungqvist, Emil E., et al. (författare)
  • Genome-scale reconstruction and metabolic modelling of the fast-growing thermophile Geobacillus sp. LC300
  • 2022
  • Ingår i: METABOLIC ENGINEERING COMMUNICATIONS. - : Elsevier BV. - 2214-0301. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermophilic microorganisms show high potential for use as biorefinery cell factories. Their high growth temperatures provide fast conversion rates, lower risk of contaminations, and facilitated purification of volatile products. To date, only a few thermophilic species have been utilized for microbial production purposes, and the development of production strains is impeded by the lack of metabolic engineering tools. In this study, we constructed a genome-scale metabolic model, an important part of the metabolic engineering pipeline, of the fast-growing thermophile Geobacillus sp. LC300. The model (iGEL604) contains 604 genes, 1249 reactions and 1311 metabolites, and the reaction reversibility is based on thermodynamics at the optimum growth temperature. The growth phenotype is analyzed by batch cultivations on two carbon sources, further closing balances in carbon and degree-of-reduction. The predictive ability of the model is benchmarked against experimentally determined growth characteristics and internal flux distributions, showing high similarity to experimental phenotypes.
  •  
15.
  • Ljungqvist, Emil E., et al. (författare)
  • Insights into the rapid metabolism of Geobacillus sp. LC300 : unraveling metabolic requirements and optimal growth conditions
  • 2024
  • Ingår i: Extremophiles. - : Springer Nature. - 1431-0651 .- 1433-4909. ; 28:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the metabolism of Geobacillus sp. LC300, a promising biorefinery host organism with high substrate utilization rates. A new defined medium was designed and tested that allows for exponential growth to elevated cell densities suitable for quantitative physiological studies. Screening of the metabolic requirements of G. sp. LC300 revealed prototrophy for all essential amino acids and most vitamins and only showed auxotrophy for vitamin B12 and biotin. The effect of temperature and pH on growth rate was investigated, adjusting the optimal growth temperature to several degrees lower than previously reported. Lastly, studies on carbon source utilization revealed a capability for fast growth on several common carbon sources, including monosaccharides, oligosaccharides, and polysaccharides, and the highest ever reported growth rate in defined medium on glucose (2.20 h(-1)) or glycerol (1.95 h(-1)). These findings provide a foundation for further exploration of G. sp. LC300's physiology and metabolic regulation, and its potential use in bioproduction processes.
  •  
16.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation
  • 2019
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer. - 0175-7598 .- 1432-0614. ; 103:14, s. 5627-5636
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by E. coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) Deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB) and/or the isocitrate-lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110 and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate forming background. Despite low 3HB titers in low-cell density screening, 3HB-producing BL21 produced 5 times less acetic acid per mol of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L-1 h-1) and the highest 3HB concentration (16.3 g L-1) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.
  •  
17.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli. Results: The production of 3HB is a two-step process where the acetoacetyl-CoA reductase was shown to accept both NADH and NADPH, but where the V-max for the latter was eight times higher. It was hypothesized that NADPH could be limiting production due to less abundance than NADH, and two strategies were employed to increase the availability; (1) glutamate was chosen as nitrogen source to minimize the NADPH consumption associated with ammonium salts and (2) glucose-6-phosphate dehydrogenase was overexpressed to improve NADPH production from the pentose phosphate pathway. Supplementation of glutamate during batch cultivation gave the highest specific productivity (q(3HB) = 0.12 g g(-1) h(-1)), while nitrogen depletion/zwf overexpression gave the highest yield (Y-3HB/CDW = 0.53 g g(-1)) and a 3HB concentration of 1 g L-1, which was 50 % higher than the reference. A nitrogen-limited fedbatch process gave a concentration of 12.7 g L-1 and a productivity of 0.42 g L-1 h(-1), which is comparable to maximum values found in recombinant E. coli. Conclusions: Increased NADPH supply is a valuable tool to increase recombinant 3HB production in E. coli, and the inherent hydrolysis of CoA leads to a natural export of the product to the medium. Acetic acid production is still the dominating by-product and this needs attention in the future to increase the volumetric productivity further.
  •  
18.
  • Sjöberg, Gustav, 1991-, et al. (författare)
  • Characterization of volatile fatty acid utilization in Escherichia coli aiming for robust valorisation of food residues
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Valorisation of food residues would greatly benefit from development of robust processes that create added value compared to current feed- and biogas applications. Recent advances in membrane-bioreactor-based open mixed microbial cultures, enable robust conversion of fluctuating streams of food residues to a mixture of volatile fatty acids (VFAs). In this study, such a mixed stream of VFAs was investigated as a substrate for Escherichia coli, a well studied organism suitable for application in further conversion of the acids into compounds of higher value, and/or that are easier to separate from the aqueous medium. E. coli was cultured in batch on a VFA-rich anaerobic digest of food residues, tolerating up to 40 mM of total VFAs without any reduction in growth rate. In carbon-limited chemostats of E. coli W3110 ΔFadR on a simulated VFA mixture, the straight chain VFAs (C2-C6) in the mixture were readily consumed simultaneously. At the dilution rate 0.1 h-1, mainly acetic-, propionic- and caproic acid were consumed, while consumption of all the provided acids were observed at 0.05 h-1. Interestingly, also the branched isovaleric acid was consumed through a hitherto unknown mechanism. In total, up to 80% of the carbon supplied from VFAs was consumed by the cells, and approximately 2.7% was excreted as nucleotide precursors in the medium. These results suggest that VFAs derived from food residues are a promising substrate for E. coli.
  •  
19.
  • Sjöberg, Gustav, et al. (författare)
  • Characterization of volatile fatty-acid utilization in Escherichia coli aiming for robust valorisation of food residues
  • 2020
  • Ingår i: AMB Express. - : Springer Nature. - 2191-0855. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Valorisation of food residues would greatly benefit from development of robust processes that create added value compared to current feed- and biogas applications. Recent advances in membrane-bioreactor-based open mixed microbial cultures, enable robust conversion of fluctuating streams of food residues to a mixture of volatile fatty acids (VFAs). In this study, such a mixed stream of VFAs was investigated as a substrate for Escherichia coli, a well-studied organism suitable for application in further conversion of the acids into compounds of higher value, and/or that are easier to separate from the aqueous medium. E. coli was cultured in batch on a VFA-rich anaerobic digest of food residues, tolerating up to 40 mM of total VFAs without any reduction in growth rate. In carbon-limited chemostats of E. coli W3110 ΔFadR on a simulated VFA mixture, the straight-chain VFAs (C2-C6) in the mixture were readily consumed simultaneously. At a dilution rate of 0.1 h−1, mainly acetic-, propionic- and caproic acid were consumed, while consumption of all the provided acids were observed at 0.05 h−1. Interestingly, also the branched isovaleric acid was consumed through a hitherto unknown mechanism. In total, up to 80% of the carbon from the supplied VFAs was consumed by the cells, and approximately 2.7% was excreted as nucleotide precursors in the medium. These results suggest that VFAs derived from food residues are a promising substrate for E. coli.
  •  
20.
  • Sjöberg, Gustav, et al. (författare)
  • Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In metabolic engineering and synthetic biology, the number of genes expressed to achieve better production and pathway regulation in each strain is steadily increasing. The method of choice for expression in Escherichia coli is usually one or several multi-copy plasmids. Meanwhile, the industry standard for long-term, robust production is chromosomal integration of the desired genes. Despite recent advances, genetic manipulation of the bacterial chromosome remains more time consuming than plasmid construction. To allow screening of different metabolic engineering strategies at a level closer to industry while maintaining the molecular-biology advantages of plasmid-based expression, we have investigated the single-copy bacterial artificial chromosome (BAC) as a development tool for metabolic engineering. Using (R)-3 hydroxybutyrate as a model product, we show that BAC can outperform multi-copy plasmids in terms of yield, productivity and specific growth rate, with respective increases of 12%, 18%, and 5%. We both show that gene expression by the BAC simplifies pathway optimization and that the phenotype of pathway expression from BAC is very close to that of chromosomal expression. From these results, we conclude that the BAC can provide a simple platform for performing pathway design and optimization. 
  •  
21.
  • Sjöberg, Gustav, et al. (författare)
  • Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome
  • 2019
  • Ingår i: Journal of Biotechnology. - : ELSEVIER. - 0168-1656 .- 1873-4863. ; 305, s. 43-50
  • Tidskriftsartikel (refereegranskat)abstract
    • In metabolic engineering and synthetic biology, the number of genes expressed to achieve better production and pathway regulation in each strain is steadily increasing. The method of choice for expression in Escherichia coli is usually one or several multi-copy plasmids. Meanwhile, the industry standard for long-term, robust production is chromosomal integration of the desired genes. Despite recent advances, genetic manipulation of the bacterial chromosome remains more time consuming than plasmid construction. To allow screening of different metabolic engineering strategies at a level closer to industry while maintaining the molecular-biology advantages of plasmid-based expression, we have investigated the single-copy bacterial artificial chromosome (BAC) as a development tool for metabolic engineering. Using (R)-3-hydroxybutyrate as a model product, we show that BAC can outperform multi-copy plasmids in terms of yield, productivity and specific growth rate, with respective increases of 12%, 18%, and 5%. We both show that gene expression by the BAC simplifies pathway optimization and that the phenotype of pathway expression from BAC is very close to that of chromosomal expression. From these results, we conclude that the BAC can provide a simple platform for performing pathway design and optimization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21
Typ av publikation
tidskriftsartikel (15)
annan publikation (2)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Gustavsson, Martin, ... (19)
van Maris, Antonius ... (9)
Larsson, Gen (8)
Guevara-Martínez, Mó ... (5)
Sjöberg, Gustav (4)
Quillaguamán, Jorge (3)
visa fler...
Lee, Sang Yup (3)
Perez-Zabaleta, Mari ... (3)
Hörnström, David (3)
Larsson, Gen, Profes ... (2)
Ljungqvist, Emil E. (2)
Turner, Charlotta (1)
Jumaah, Firas (1)
Olofsson, Gunnar (1)
Agevall, Ola (1)
Samuelsson, Jorgen (1)
Fornstedt, Torgny (1)
Boberg, Johan, 1984- (1)
Börjesson, Mikael, P ... (1)
Gustavsson, Martin (1)
Sjöberg, Per J.R. (1)
Samuelson, Patrik (1)
Enmark, Martin, 1984 ... (1)
Lindqvist, Moa (1)
Belotserkovsky, Jaro ... (1)
Lidegran, Ida, 1971- (1)
Dalberg, Tobias, 198 ... (1)
Gustavsson, Christer (1)
Veide, Andres, Unive ... (1)
Göransdotter, Rebeck ... (1)
Backman, Lisa (1)
Vabø, Agnete (1)
Berglund, Per, Profe ... (1)
Cheon, Seungwoo (1)
Kim, Hye Mi (1)
Chung, Hannah (1)
Yang, Jung Eun (1)
Ha, Ji Yeon (1)
Chae, Tong Un (1)
Shin, Jae Ho (1)
Daga-Quisbert, Jeane ... (1)
Fridén, Mikael E, 19 ... (1)
Jarmander, Johan (1)
Lundh, Susanna (1)
Neubauer, Peter, Pro ... (1)
Muraleedharan, Madhu ... (1)
de Gier, Jan-Willem, ... (1)
Jarmander, Johan, 19 ... (1)
Do, Thi-Huyen (1)
Lindroos, Magnus (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (19)
Uppsala universitet (2)
Luleå tekniska universitet (1)
Karlstads universitet (1)
Språk
Engelska (20)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Teknik (13)
Naturvetenskap (6)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy