SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gutowski W.) "

Search: WFRF:(Gutowski W.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Gutowski, M. W., et al. (author)
  • Interval Identification of FMR Parameters for Spin Reorientation Transition in (Ga,Mn)As
  • 2012
  • In: Acta Physica Polonica. Series A: General Physics, Physics of Condensed Matter, Optics and Quantum Electronics, Atomic and Molecular Physics, Applied Physics. - 0587-4246. ; 121:5-6, s. 1228-1230
  • Journal article (peer-reviewed)abstract
    • In this work we report results of ferromagnetic resonance studies of a 6% 15 nm (Ga,Mn)As layer, deposited on (001)-oriented GaAs. The measurements were performed with in-plane oriented magnetic field, in the temperature range between 5 K and 120 K. We observe a temperature induced reorientation of the effective in-plane easy axis from [(1) over bar 10] to [110] direction close to the Curie temperature. The behavior of magnetization is described by anisotropy fields, H-eff (= 4 pi M - H-2 perpendicular to), H-2 parallel to, and H-4 parallel to. In order to precisely investigate this reorientation, numerical values of anisotropy fields have been determined using powerful - but still largely unknown - interval calculations. In simulation mode this approach makes possible to find all the resonance fields for arbitrarily oriented sample, which is generally intractable analytically. In "fitting" mode we effectively utilize full experimental information, not only those measurements performed in special, distinguished directions, to reliably estimate the values of important physical parameters as well as their uncertainties and correlations.
  •  
4.
  • Choi, J., et al. (author)
  • Spatially inhomogeneous competition between superconductivity and the charge density wave in YBa2Cu3O6.67
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The charge density wave in the high-temperature superconductor YBa2Cu3O7−x (YBCO) has two different ordering tendencies differentiated by their c-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-CDW) couplings between CDWs in neighbouring CuO2 bilayers. This discovery has prompted several fundamental questions: how does superconductivity adjust to two competing orders and are either of these orders responsible for the electronic reconstruction? Here we use x-ray diffraction to study YBa2Cu3O6.67 as a function of magnetic field and temperature. We show that regions with F-CDW correlations suppress superconductivity more strongly than those with AF-CDW correlations. This implies that an inhomogeneous superconducting state exists, in which some regions show a fragile form of superconductivity. By comparison of F-CDW and AF-CDW correlation lengths, it is concluded that F-CDW ordering is sufficiently long-range to modify the electronic structure. Our study thus suggests that F-CDW correlations impact both the superconducting and normal state properties of YBCO.
  •  
5.
  •  
6.
  • Meyer, Esther, et al. (author)
  • Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.
  • 2017
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 49, s. 223-237
  • Journal article (peer-reviewed)abstract
    • Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.
  •  
7.
  • Pagnamenta, A. T., et al. (author)
  • An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy
  • 2021
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144, s. 584-600
  • Journal article (peer-reviewed)abstract
    • The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose 47000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 +/- 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view