SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guven O) "

Sökning: WFRF:(Guven O)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Barkholt, L, et al. (författare)
  • Safety analysis of ex vivo-expanded NK and NK-like T cells administered to cancer patients: a phase I clinical study
  • 2009
  • Ingår i: Immunotherapy. - : Future Medicine Ltd. - 1750-7448 .- 1750-743X. ; 1:5, s. 753-764
  • Tidskriftsartikel (refereegranskat)abstract
    • The chimeric state after allogeneic hematopoietic stem cell transplantation provides a platform for adoptive immunotherapy using donor-derived immune cells. The major risk with donor lymphocyte infusions (DLIs) is the development of graft-versus-host disease (GvHD). Development of new DLI products with antitumor reactivity and reduced GvHD risk represents a challenging task in cancer immunotherapy. Although natural killer (NK) and NK-like T cells are promising owing to their antitumor activity, their low concentrations in peripheral blood mononuclear cells reduces their utility in DLIs. We have recently developed a system that allows expansion of clinical-grade NK and NK-like T cells in large numbers. In this study, the safety of donor-derived long-term ex vivo-expanded human NK and NK-like T cells given as DLIs was investigated as immunotherapy for cancer in five patients following allogeneic stem cell infusion. Infusion of the cells was safe whether administered alone or with IL-2 subcutaneously. No signs of acute GvHD were observed. One patient with hepatocellular carcinoma showed markedly decreased serum α-fetoprotein levels following cell infusions. These findings suggest that the use of ex vivo-expanded NK and NK-like T cells is safe and appears an attractive approach for further clinical evaluation in cancer patients.
  •  
5.
  • Parenti, Marco Daniele, et al. (författare)
  • Discovery of the 4-aminopiperidine-based compound EM127 for the site-specific covalent inhibition of SMYD3
  • 2022
  • Ingår i: European Journal of Medicinal Chemistry. - : Elsevier. - 0223-5234 .- 1768-3254. ; 243
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent findings support the hypothesis that inhibition of SMYD3 methyltransferase may be a therapeutic avenue for some of the deadliest cancer types. Herein, active site-selective covalent SMYD3 inhibitors were designed by introducing an appropriate reactive cysteine trap into reversible first-generation SMYD3 inhibitors. The 4-amino-piperidine derivative EM127 (11C) bearing a 2-chloroethanoyl group as reactive warhead showed selectivity for Cys186, located in the substrate/histone binding pocket. Selectivity towards Cys186 was retained even at high inhibitor/enzyme ratio, as shown by mass spectrometry. The mode of interaction with the SMYD3 substrate/ histone binding pocket was revealed by crystallographic studies. In enzymatic assays, 11C showed a stronger SMYD3 inhibitory effect compared to the reference inhibitor EPZ031686. Remarkably, 11C attenuated the proliferation of MDA-MB-231 breast cancer cell line at the same low micromolar range of concentrations that reduced SMYD3 mediated ERK signaling in HCT116 colorectal cancer and MDA-MB-231 breast cancer cells. Furthermore, 11C (5 mu M) strongly decreased the steady-state mRNA levels of genes important for tumor biology such as cyclin dependent kinase 2, c-MET, N-cadherin and fibronectin 1, all known to be regulated, at least in part, by SMYD3. Thus, 11C is as a first example of second generation SMYD3 inhibitors; this agent represents a covalent and a site specific SMYD3 binder capable of potent and prolonged attenuation of methyltransferase activity.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy