SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Häggi C.) "

Sökning: WFRF:(Häggi C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sawakuchi, A. O., et al. (författare)
  • Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin
  • 2018
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier. - 0012-821X .- 1385-013X. ; 492, s. 152-162
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example, Tapajos and Xingu Rivers show more sensitive quartz than Solimbes and Madeira Rivers, even though the latter have a significantly larger catchment area and longer sediment transport distance. Interestingly, high sensitivity quartz is observed in rivers draining relatively stable Central Brazil and Guiana shield areas (denudation rate xi = 0.04 mm yr(-1)), while low sensitivity quartz occurs in less stable Andean terrains (xi = 0.24 mm yr(-1)). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin. Furthermore, luminescence sensitivity measured in sand or silt arises from the same mineral components (quartz and feldspar) and clearly discriminates between Andean and shield sediments, avoiding the grain size bias in provenance analysis. These results have implications for using luminescence sensitivity as a proxy for Andean and shield contributions in the stratigraphic record, providing a new tool to reconstruct past drainage configurations within the Amazon basin.
  •  
2.
  • Häggi, C., et al. (författare)
  • GDGT distribution in tropical soils and its potential as a terrestrial paleothermometer revealed by Bayesian deep-learning models
  • 2023
  • Ingår i: Geochimica Et Cosmochimica Acta. - 0016-7037. ; 362, s. 41-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Branched and isoprenoidal glycerol dialkyl glycerol tetraethers (br- and isoGDGTs) are membrane lipids produced by bacteria and archaea, respectively. These lipids form the basis of several frequently used paleoclimatic proxies. For example, the degree of methylation of brGDGTs (MBT'5Me) preserved in mineral soils (as well as peats and lakes) is one of the most important terrestrial paleothermometers, but features substantial variability that is so far insufficiently constrained. The distribution of isoGDGTs in mineral soils has received less attention and applications have focused on the use of the relative abundance of the isoGDGT crenarchaeol versus brGDGTs (BIT index) as an indicator of aridity. To expand our knowledge of the factors that can impact the br- and isoGDGT distribution in mineral soils, including the MBT'5Me index, and to improve isoGDGT-based precipitation reconstructions, we surveyed the GDGT distribution in a large collection of mineral surface soils (n = 229) and soil profiles (n = 22) across tropical South America. We find that the MBT'5Me index is significantly higher in grassland compared to forest soils, even among sites with the same mean annual air temperature. This is likely a result of a lack of shading in grasslands, leading to warmer soils. We also find a relationship between MBT'5Me and soil pH in tropical soils. Together with existing data from arid areas in mid-latitudes, we confirm the relationship between the BIT-index and aridity, but also find that the isoGDGT distribution alone is aridity dependent. The combined use of the BIT-index and isoGDGTs can strengthen reconstructions of past precipitation in terrestrial archives. In terms of site-specific variations, we find that the variability in BIT and MBT'5Me is larger at sites that show on average lower BIT and MBT'5Me values. In combination with modelling results, we suggest that this pattern arises from the mathematical formulation of these proxies that amplifies variability for intermediate values and mutes it for values close to saturation (value of 1). Soil profiles show relatively little variation with depth for the brGDGT indices. On the other hand, the isoGDGT distribution changes significantly with depth as does the relative abundance of br- versus isoGDGTs. This pattern is especially pronounced for the isoGDGTIsomerIndex where deeper soil horizons show a near absence of isoGDGT isomers. This might be driven by archaeal community changes in different soil horizons, potentially driven by the difference between aerobic and anaerobic archaeal communities. Finally, we use our extensive new dataset and Bayesian neural networks (BNNs) to establish new brGDGT-based temperature models. We provide a tropical soil calibration that removes the pH dependence of tropical soils (n = 404; RMSE = 2.0 degrees C) and global peat and soil models calibrated against the temperature of the months above freezing (n = 1740; RMSE = 2.4) and mean annual air temperature (n = 1740; RMSE = 3.6). All models correct for the bias found in arid samples. We also successfully test the new calibrations on Chinese loess records and tropical river sediments. Overall, the new calibrations provide improved temperature reconstructions for terrestrial archives.
  •  
3.
  • Häggi, C., et al. (författare)
  • Negligible Quantities of Particulate Low-Temperature Pyrogenic Carbon Reach the Atlantic Ocean via the Amazon River
  • 2021
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 35:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Particulate pyrogenic carbon (PyC) transported by rivers and aerosols, and deposited in marine sediments, is an important part of the carbon cycle. The chemical composition of PyC is temperature dependent and levoglucosan is a source-specific burning marker used to trace low-temperature PyC. Levoglucosan associated to particulate material has been shown to be preserved during riverine transport and marine deposition in high- and mid-latitudes, but it is yet unknown if this is also the case for (sub)tropical areas, where 90% of global PyC is produced. Here, we investigate transport and deposition of levoglucosan in suspended and riverbed sediments from the Amazon River system and adjacent marine deposition areas. We show that the Amazon River exports negligible amounts of levoglucosan and that concentrations in sediments from the main Amazon tributaries are not related to long-term mean catchment-wide fire activity. Levoglucosan concentrations in marine sediments offshore the Amazon Estuary are positively correlated to total organic content regardless of terrestrial or marine origin, supporting the notion that association of suspended or dissolved PyC to biogenic particles is critical in the preservation of PyC. We estimate that 0.5-10 x 10(6) g yr(-1) of levoglucosan is exported by the Amazon River. This represents only 0.5-10 ppm of the total exported PyC and thereby an insignificant fraction, indicating that riverine derived levoglucosan and low-temperature PyC in the tropics are almost completely degraded before deposition. Hence, we suggest caution in using levoglucosan as tracer for past fire activity in tropical settings near rivers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy