SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Härri Jérôme) "

Sökning: WFRF:(Härri Jérôme)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aramrattana, Maytheewat, et al. (författare)
  • Evaluating Model Mismatch Impacting CACC Controllers in Mixed
  • 2018
  • Ingår i: IEEE Intelligent Vehicles Symposium, Proceedings. - : Institute of Electrical and Electronics Engineers Inc.. - 9781538644522 - 9781538644515 - 9781538644539 ; , s. 1867-1872
  • Konferensbidrag (refereegranskat)abstract
    • At early market penetration, automated vehicles will share the road with legacy vehicles. For a safe transportation system, automated vehicle controllers therefore need to estimate the behavior of the legacy vehicles. However, mismatches between the estimated and real human behaviors can lead to inefficient control inputs, and even collisions in the worst case. In this paper, we propose a framework for evaluating the impact of model mismatch by interfacing a controller under test with a driving simulator. As a proof- of-concept, an algorithm based on Model Predictive Control (MPC) is evaluated in a braking scenario. We show how model mismatch between estimated and real human behavior can lead to a decrease in avoided collisions by almost 46%, and an increase in discomfort by almost 91%. Model mismatch is therefore non-negligible and the proposed framework is a unique method to evaluate them.
  •  
2.
  • Molinaro, Antonella, et al. (författare)
  • 5G-V2X Communications and Networking for Connected and Autonomous Vehicles
  • 2020
  • Ingår i: Future Internet. - Basel : MDPI. - 1999-5903. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last decade, there has been a surge in interest in connected and automated vehicles (CAVs) and related enabling technologies in the fields of communication, automation, computing, sensing, and positioning [...]
  •  
3.
  • Patel, Raj-Haresh, 1991, et al. (författare)
  • Buffer-Aided Model Predictive Controller to Mitigate Model Mismatches and Localization Errors
  • 2018
  • Ingår i: IEEE Transactions on Intelligent Vehicles. - 2379-8858. ; 3:4, s. 501-510
  • Tidskriftsartikel (refereegranskat)abstract
    • Any vehicle needs to be aware of its localization, destination, and neighboring vehicles' state information for collision free navigation. A centralized controller computes controls for cooperative adaptive cruise control (CACC) vehicles based on the assumed behavior of manually driven vehicles (MDVs) in a mixed vehicle scenario. The assumed behavior of the MDVs may be different from the actual behavior, which gives rise to a model mismatch. The use of erroneous localization information can generate erroneous controls. The presence of a model mismatch and the use of erroneous controls could potentially result into collisions. A controller robust to issues such as localization errors and model mismatches is thus required. This paper proposes a robust model predictive controller, which accounts for localization errors and mitigates model mismatches. Future control values computed by the centralized controller are shared with CACC vehicles and are stored in a buffer. Due to large localization errors or model mismatches when control computations are infeasible, control values from the buffer are used. Simulation results show that the proposed robust controller with buffer can avoid almost the same number of collisions in a scenario impacted by localization errors as that in a scenario with no localization errors despite model mismatch.
  •  
4.
  • Sidorenko, Galina, 1985- (författare)
  • Cooperative Automated Driving for Enhanced Safety and Ethical Decision-Making
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Advances in technologies for vehicular communication enable new applications for Cooperative Intelligent Transportation Systems (C-ITS). Communicating vehicles share information and cooperate, which allows for improved safety, fuel economy, and traffic efficiency. Platooning – a coordinated string of vehicles with small Inter-Vehicle Distances (IVDs) – comprises one such C-ITS application. Any C-ITS application must comply with high safety requirements to pass standardization and be commercially deployed. Moreover, trusted solutions should be guaranteed even for critical scenarios or rare edge cases. This thesis presents two sets of contributions related to cooperative automated driving. Firstly, it provides conditions ensuring safe platooning or vehicle following. Secondly, it introduces an ethical framework to guide autonomous decision-making in scenarios involving imminent collisions. In the first set of contributions, we consider emergency braking scenarios for vehicles driving in a platoon or following each other. In such scenarios, the lead vehicle suddenly brakes. This requires swift responses from followers to prevent rear-end collisions. Here, Vehicle-to-Everything (V2X) communication has the potential to significantly reduce reaction times by allowing the lead vehicle to notify followers of the emergency braking. The presented safety analysis yields computationally efficient methods and algorithms for calculating minimum IVDs for rear-end collision avoidance. The IVDs are computed for closed-loop and open-loop configurations. The open-loop configuration implies followers drive with a constant velocity until the onset of braking, whereas in the closed-loop configuration, a controller is used under some restrictions. In addition, a centralized approach for optimization of IVDs in platoon formations is carried out. Such an approach allows for improved fuel consumption and road utilization. An analytical comparison shows that our proposed Vehicle-to-Vehicle (V2V) communication-based solution is superior to classic automated systems, such as automatic emergency braking system, which utilizes only onboard sensors. Wireless communication provides intentions to vehicles almost immediately, which allows for smaller IVDs while guaranteeing the same level of safety.In the second set of contributions, an ethical framework to guide autonomous decision-making is presented. Even though collisions resulting from edge cases are unlikely, it is essential to address them in motion planning logic for autonomous vehicles. Decisions made in such situations should always prioritize ethical considerations, such as saving human lives. Adhering to ethical principles in the development and deployment of autonomous vehicles is essential for fostering public understanding and acceptance. The thesis presents a framework of ethical V2X communication, where V2X is acknowledged as an essential means for enabling autonomous vehicles to perform coordinated actions to meet certain ethical criteria. The presented framework demonstrates how the risk or harm resulting from unavoidable collisions can be mitigated or redistributed under ethical considerations through cooperation between vehicles. Overall, the presented thesis highlights the importance of C-ITS and, specifically, V2X communication in managing emergency scenarios. V2X communication enables faster response times and facilitates cooperative maneuvers, which helps preventing rear-end collisions or mitigating their consequences under ethical considerations. Future work directions include an extension of the obtained results by considering more advanced models of vehicles, environment, and communication settings; and applying the proposed frameworks to more complicated traffic scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy