SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hallquist M) "

Sökning: WFRF:(Hallquist M)

  • Resultat 1-50 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bilde, M., et al. (författare)
  • Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures
  • 2015
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 115:10, s. 4115-4156
  • Forskningsöversikt (refereegranskat)abstract
    • There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.
  •  
2.
  • Donahue, N. M., et al. (författare)
  • Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:34, s. 13503-13508
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.
  •  
3.
  • Priestley, Michael, et al. (författare)
  • Chemical characterisation of benzene oxidation products under high- and low-NOx conditions using chemical ionisation mass spectrometry
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:5, s. 3473-3490
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic hydrocarbons are a class of volatile organic compounds associated with anthropogenic activity and make up a significant fraction of urban volatile organic compound (VOC) emissions that contribute to the formation of secondary organic aerosol (SOA). Benzene is one of the most abundant species emitted from vehicles, biomass burning and industry. An iodide time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) and nitrate ToF-CIMS were deployed at the Julich Plant Atmosphere Chamber as part of a series of experiments examining benzene oxidation by OH under high- and low-NOx conditions, where a range of organic oxidation products were detected. The nitrate scheme detects many oxidation products with high masses, ranging from intermediate volatile organic compounds (IVOCs) to extremely low volatile organic compounds (ELVOCs), including C-12 dimers. In comparison, very few species with C->= 6 and O-> 8 were detected with the iodide scheme, which detected many more IVOCs and semi-volatile organic compounds (SVOCs) but very few ELVOCs and low volatile organic compounds (LVOCs). A total of 132 and 195 CHO
  •  
4.
  • Hallquist, Mattias, 1969, et al. (författare)
  • The formation, properties and impact of secondary organic aerosol: Current and emerging issues
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9:14, s. 5155-5236
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.
  •  
5.
  •  
6.
  •  
7.
  • Le Breton, Michael, 1986, et al. (författare)
  • Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl-VOC production
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:17, s. 13013-13030:18, s. 13013-13030
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitryl chloride (ClNO2) accumulation at night acts as a significant reservoir for active chlorine and impacts the following day's photochemistry when the chlorine atom is liberated at sunrise. Here, we report simultaneous measurements of N2O5 and a suite of inorganic halogens including ClNO2 and reactions of chloride with volatile organic compounds (Cl-VOCs) in the gas and particle phases utilising the Filter Inlet for Gas and AEROsols time-of-flight chemical ionisation mass spectrometer (FIGAERO-ToF-CIMS) during an intensive measurement campaign 40 km northwest of Beijing in May and June 2016. A maximum mixing ratio of 2900 ppt of ClNO2 was observed with a mean campaign nighttime mixing ratio of 487 ppt, appearing to have an anthropogenic source supported by correlation with SO2, CO and benzene, which often persisted at high levels after sunrise until midday. This was attributed to such high mixing ratios persisting after numerous e-folding times of the photolytic lifetime enabling the chlorine atom production to reach 2.3 x 10(5) molecules cm(-3) from ClNO2 alone, peaking at 09:30 LT and up to 8.4 x 10(5) molecules cm(-3) when including the supporting inorganic halogen measurements. Cl-VOCs were observed in the particle and gas phases for the first time at high time resolution and illustrate how the iodide ToF-CIMS can detect unique markers of chlorine atom chemistry in ambient air from both biogenic and anthropogenic sources. Their presence and abundance can be explained via time series of their measured and steady-state calculated precursors, enabling the assessment of competing OH and chlorine atom oxidation via measurements of products from both of these mechanisms and their relative contribution to secondary organic aerosol (SOA) formation.
  •  
8.
  • Le Breton, Michael, 1986, et al. (författare)
  • Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:14, s. 10355-10371
  • Tidskriftsartikel (refereegranskat)abstract
    • A time-of-flight chemical ionization mass spectrometer (CIMS) utilizing the Filter Inlet for Gas and Aerosol (FIGAERO) was deployed at a regional site 40 km north-west of Beijing and successfully identified and measured 17 sulfur-containing organics (SCOs are organo/nitrooxy organosulfates and sulfonates) with biogenic and anthropogenic precursors. The SCOs were quantified using laboratory-synthesized standards of lactic acid sulfate and nitrophenol organosulfate (NP OS). The variation in field observations was confirmed by comparison to offline measurement techniques (orbitrap and high-performance liquid chromatography, HPLC) using daily averages. The mean total (of the 17 identified by CIMS) SCO particle mass concentration was 210 +/- 110 ng m(-3) and had a maximum of 540 ng m(-3), although it contributed to only 2 +/- 1% of the organic aerosol (OA). The CIMS identified a persistent gas-phase presence of SCOs in the ambient air, which was further supported by separate vapour-pressure measurements of NP OS by a Knudsen Effusion Mass Spectrometer (KEMS). An increase in relative humidity (RH) promoted partitioning of SCO to the particle phase, whereas higher temperatures favoured higher gas-phase concentrations. Biogenic emissions contributed to only 19% of total SCOs measured in this study. Here, C10H16NSO7, a monoterpene-derived SCO, represented the highest fraction (10 %) followed by an isoprene-derived SCO. The anthropogenic SCOs with polycyclic aromatic hydrocarbon (PAH) and aromatic precursors dominated the SCO mass loading (51 %) with C11H11SO7, derived from methyl naphthalene oxidation, contributing to 40 ng m(-3) and 0.3% of the OA mass. Anthropogenic-related SCOs correlated well with benzene, although their abundance depended highly on the photochemical age of the air mass, tracked using the ratio between pinonic acid and its oxidation product, acting as a qualitative photochemical clock. In addition to typical anthropogenic and biogenic precursors the biomass-burning precursor nitrophenol (NP) provided a significant level of NP OS. It must be noted that the contribution analysis here is only representative of the detected SCOs. There are likely to be many more SCOs present which the CIMS has not identified. Gas- and particle-phase measurements of glycolic acid suggest that partitioning towards the particle phase promotes glycolic acid sulfate production, contrary to the current formation mechanism suggested in the literature. Furthermore, the HSO4 center dot H2SO4- cluster measured by the CIMS was utilized as a qualitative marker for acidity and indicates that the production of total SCOs is efficient in highly acidic aerosols with high SO42- and organic content. This dependency becomes more complex when observing individual SCOs due to variability of specific VOC precursors.
  •  
9.
  • Li, J. J., et al. (författare)
  • Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer
  • 2019
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 124:10, s. 5629-5649
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol mass spectrometry was used to characterize submicron aerosols before and after aging in a Gothenburg Potential Aerosol Mass (Go:PAM) reactor at two suburban sites in China, one in northern China at Changping (CP), Beijing, and a second in southern China at Hong Kong (HK). Organic aerosol (OA) dominated in the ambient nonrefractory particulate matter <1m (NR-PM1) for both CP (42-71%) and HK (43-61%), with a large contribution from secondary OA factors that were semivolatile oxygenated (SVOOA) and low-volatility oxygenated (LVOOA). Under constant OH exposure, OA enhancement (78-98%) dominated the NR-PM1 mass increment at both sites, while nitrate was enhanced the most among the inorganic species (7-9%). Overall, the CP site exhibited higher OA oxidation potential and more enhancement of SVOOA than LVOOA (7.5 vs. 2.7g/m(3)), but the reverse was observed in HK (0.8 vs. 2.6g/m(3)). In CP, more enhancement of the less oxygenated SVOOA suggests that aerosol aging was more sensitive to the abundant locally emitted primary OA and volatile organic compound precursors. On the contrary, the more formation of the highly oxidized LVOOA in HK indicates that aerosol aging mainly escalated the degree of oxygenation of OA as ambient aerosol was already quite aged and there was a lack of volatile organic compound precursors. The comparative measurements using the same oxidation system reveal distinct key factors and mechanisms that influence secondary aerosol formation in two suburban locations in China, providing scientific insights to assist formulation of location-specific mitigation measures of secondary pollution. Plain Language Summary Atmospheric submicron particles have significant impacts on the climate and human health. A large part of these particles are formed secondarily through successive aging of primary emissions. To study such aging processes, we used a reactor that can provide highly oxidizing conditions to simulate the oxidation of ambient aerosols at accelerated rates. An online mass spectrometer was connected after the reactor to measure changes in aerosol mass concentration and chemical composition between the ambient samples and the oxidized ones. We presented the first comparative measurements of the aging potentials of ambient aerosols in two suburban sites in northern and southern China (Changping District in Beijing, and Hong Kong). Results showed that generally aerosols at the Changping site had higher aging potentials after passing through the oxidation reactor, probably due to more local emissions of precursors, while air masses in Hong Kong were already in a higher oxidation state with lower aging potentials, mainly because of strong impacts from long-range transported pollution sources. Distinct aerosol aging pathways related to different ambient precursors were observed at the two sites. Understanding of the different characteristics of aerosol aging processes can lead to advances in air quality modeling and pollution management.
  •  
10.
  • Li, J. J., et al. (författare)
  • Concurrent measurements of nitrate at urban and suburban sites identify local nitrate formation as a driver for urban episodic PM2.5 pollution
  • 2023
  • Ingår i: Science of the total environment. - 0048-9697. ; 897
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrate (NO3-) is often among the leading components of urban particulate matter (PM) during PM pollution episodes. However, the factors controlling its prevalence remain inadequately understood. In this work, we analyzed concurrent hourly monitoring data of NO3- in PM2.5 at a pair of urban and suburban locations (28 km apart) in Hong Kong for a period of two months. The concentration gradient in PM2.5 NO3- was 3.0 +/- 2.9 (urban) vs. 1.3 +/- 0.9 mu g m(-3) (suburban) while that for its precursors nitrogen oxides (NOx) was 38.1 vs 4.1 ppb. NO3- accounted for 45% of the difference in PM2.5 between the sites. Both sites were characterized to have more available NH3 than HNO3. Urban nitrate episodes, defined as periods of urban-suburban NO3- difference exceeding 2 mu g m(-3), constituted 21 % of the total measurement hours, with an hourly NO3- average gradient of 4.2 and a peak value of 23.6 mu g m(-3). Our comparative analysis, together with 3-D air quality model simulations, indicates that the high NOx levels largely explain the excessive NO3- concentrations in our urban site, with the gas phase HNO3 formation reaction contributing significantly during the daytime and the N2O5 hydrolysis pathway playing a prominent role during nighttime. This study presents a first quantitative analysis that unambiguously shows local formation of NO3- in urban environments as a driver for urban episodic PM2.5 pollution, suggesting effective benefits of lowering urban NOx.
  •  
11.
  • Meng, X. X. Y., et al. (författare)
  • Humidity-Dependent Phase State of Gasoline Vehicle Emission-Related Aerosols
  • 2021
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:2, s. 832-841
  • Tidskriftsartikel (refereegranskat)abstract
    • The phase states of primarily emitted and secondarily formed aerosols from gasoline vehicle exhausts were investigated by quantifying the particle rebound fraction (f). The rebound behaviors of gasoline vehicle emission-related aerosols varied with engines, fuel types, and photochemical aging time, showing distinguished differences from biogenic secondary organic aerosols. The nonliquid-to-liquid phase transition of primary aerosols emitted from port fuel injection (PFI) and gasoline direct injection (GDI) vehicles started at a relative humidity (RH) = 50 and 60%, and liquefaction was accomplished at 60 and 70%, respectively. The RH at which f declined to 0.5 decreased from 70 to 65% for the PFI case with 92# fuel, corresponding to the photochemical aging time from 0.37 to 4.62 days. For the GDI case, such RH enhanced from 60 to 65%. Our results can be used to imply the phase state of traffic-related aerosols and further understand their roles in urban atmospheric chemistry. Taking Beijing, China, as an example, traffic-related aerosols were mainly nonliquid during winter with the majority ambient RH below 50%, whereas they were mostly liquid during the morning rush hour of summer, and traffic-related secondary aerosols fluctuated between nonliquid and liquid during the daytime and tended to be liquid at night with increased ambient RH.
  •  
12.
  • Meyer, N. K., et al. (författare)
  • Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles
  • 2008
  • Ingår i: Atmos. Chem. Phys. Discuss.. ; 8, s. 8629-8659
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The volatile and hygroscopic properties of ammonium sulphate seeded and un-seeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility – hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived from photo-oxidised α-pinene has been shown to affect the equilibrium water content of inorganic aerosols below their DRH. For SOA volume fractions above ~0.3 the measured growth factor followed roughly parallel to the ZSR prediction based on fully dissolved (NH4)2SO4 although with a small difference that was just larger than the error estimate. Both incomplete dissolution and negative solute-solute interactions could be responsible for the lower HGF observed compared to the ZSR predictions.
  •  
13.
  • Meyer, N. K., et al. (författare)
  • Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles
  • 2009
  • Ingår i: Atmos. Chem. Phys.. ; 9, s. 721-732
  • Tidskriftsartikel (refereegranskat)abstract
    • The volatile and hygroscopic properties of ammonium sulphate seeded and unseeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility – hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived from photo-oxidised α-pinene has been shown to affect the equilibrium water content of inorganic aerosols below their DRH. For SOA volume fractions above ~0.3 the measured growth factor followed roughly parallel to the ZSR prediction based on fully dissolved (NH4)2SO4 although with a small difference that was just larger than the error estimate. Both incomplete dissolution and negative solute-solute interactions could be responsible for the lower HGF observed compared to the ZSR predictions.
  •  
14.
  • Mohr, C., et al. (författare)
  • Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 44:6, s. 2958-2966
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10(-15) to 10(-6)mu gm(-3) (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10(-3) to 10(-2)mu gm(-3) (similar to 10(6)-10(7)moleculescm(-3)) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of similar to 5% to early stage particle growth from the similar to 60 gaseous dimer compounds. Plain Language Summary Atmospheric aerosol particles influence climate and air quality. We present new insights into how emissions of volatile organic compounds from trees are transformed in the atmosphere to contribute to the formation and growth of aerosol particles. We detected for the first time over a forest, a group of organic molecules, known to grow particles, in the gas phase at levels far higher than expected. Previous measurements had only measured them in the particles. This finding provides guidance on how models of aerosol formation and growth should describe their appearance and fate in the atmosphere.
  •  
15.
  • Nordin, E. Z., et al. (författare)
  • Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6101-6116
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2-EURO4) were investigated with photo-oxidation experiments in a 6 m(3) smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of similar to 5 x 10(6) cm(-3) h, the formed SOA was 1-2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f(43) (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O:C and H:C ratios were similar for the two cases. Classical C-6-C-9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C-10 and C-11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.
  •  
16.
  •  
17.
  • Salo, Kent, 1967, et al. (författare)
  • Volatility of secondary organic aerosol during OH radical induced ageing
  • 2011
  • Ingår i: Atmos. Chem. Phys. - : Copernicus GmbH. ; 11, s. 11055-11067
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate oxidation of SOA formed from ozonolysis of α-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA) set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of Karlsruhe Institute of Technology (KIT) in Karlsruhe and at the SAPHIR chamber of Forchungzentrum Jülich (FZJ) in Jülich. A fresh SOA was produced from ozonolysis of α-pinene or limonene and then aged by enhanced OH exposure. As an OH radical source in the AIDA-chamber the ozonolysis of tetramethylethylene (TME) was used while in the SAPHIR-chamber the OH was produced by natural light photochemistry. A general feature is that SOA produced from ozonolysis of α-pinene and limonene initially was rather volatile and becomes less volatile with time in the ozonolysis part of the experiment. Inducing OH chemistry or adding a new portion of precursors made the SOA more volatile due to addition of new semi-volatile material to the aged aerosol. The effect of OH chemistry was less pronounced in high concentration and low temperature experiments when lower relative amounts of semi-volatile material were available in the gas phase. Conclusions drawn from the changes in volatility were confirmed by comparison with the measured and modelled chemical composition of the aerosol phase. Three quantified products from the α-pinene oxidation; pinonic acid, pinic acid and methylbutanetricarboxylic acid (MBTCA) were used to probe the processes influencing aerosol volatility. A major conclusion from the work is that the OH induced ageing can be attributed to gas phase oxidation of products produced in the primary SOA formation process and that there was no indication on significant bulk or surface reactions. The presented results, thus, strongly emphasise the importance of gas phase oxidation of semi- or intermediate-volatile organic compounds (SVOC and IVOC) for atmospheric aerosol ageing.
  •  
18.
  • Tsiligiannis, Epameinondas, et al. (författare)
  • A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C-5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.
  •  
19.
  • Wang, H. C., et al. (författare)
  • Efficient N2O5 uptake and NO3 oxidation in the outflow of urban Beijing
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:13, s. 9705-9721
  • Tidskriftsartikel (refereegranskat)abstract
    • Nocturnal reactive nitrogen compounds play an important role in regional air pollution. Here we present the measurements of dinitrogen pentoxide (N2O5) associated with nitryl chloride (ClNO2) and particulate nitrate (pNO(3)(-)) at a suburban site of Beijing in the summer of 2016. High levels of N2O5 and ClNO2 were observed in the outflow of the urban Beijing air masses, with 1 min average maxima of 937 and 2900 pptv, respectively. The N2O5 uptake coefficients, gamma, and ClNO2 yield, f, were experimentally determined from the observed parameters. The N2O5 uptake coefficient ranged from 0.012 to 0.055, with an average of 0.034 +/- 0.018, which is in the upper range of previous field studies reported in North America and Europe but is a moderate value in the North China Plain (NCP), which reflects efficient N2O5 heterogeneous processes in Beijing. The ClNO2 yield exhibited high variability, with a range of 0.50 to unity and an average of 0.73 +/- 0.25. The concentration of the nitrate radical (NO3) was calculated assuming that the thermal equilibrium between NO3 and N2O5 was maintained. In NOx-rich air masses, the oxidation of nocturnal biogenic volatile organic compounds (BVOCs) was dominated by NO3 rather than O-3. The production rate of organic nitrate (ON) via NO3 + BVOCs was significant, with an average of 0.10 +/- 0.07 ppbvh(-1). We highlight the importance of NO3 oxidation of VOCs in the formation of ON and subsequent secondary organic aerosols in summer in Beijing.
  •  
20.
  • Watne, Ågot, 1983, et al. (författare)
  • Fresh and Oxidized Emissions from In-Use Transit Buses Running on Diesel, Biodiesel, and CNG
  • 2018
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52:14, s. 7720-7728
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential effect of changing to a nonfossil fuel vehicle fleet was investigated by measuring primary emissions (by extractive sampling of bus plumes) and secondary mass formation, using a Gothenburg Potential Aerosol Mass (Go:PAM) reactor, from 29 in-use transit buses. Regarding fresh emissions, diesel (DSL) buses without a diesel particulate filter (DPF) emitted the highest median mass of particles, whereas compressed natural gas (CNG) buses emitted the lowest ((EFPM)-E-Md 514 and 11 mg kg(fuel)(-1) respectively). Rapeseed methyl ester (RME) buses showed smaller (EFPM)-E-Md and particle sizes than DSL buses. DSL (no DPF) and hybrid-electric RME (RMEHEV) buses exhibited the highest particle numbers ((EFPN)-E-Md 12 X 10(14) # kg(fuel)(-1)). RMEHEv buses displayed a significant nucleation mode (D-p < 20 nm). EFPN of CNG buses spanned the highest to lowest values measured. Low (EFPN)-E-Md and (EFPM)-E-Md were observed for a DPF-equipped DSL bus. Secondary particle formation resulting from exhaust aging was generally important for all the buses (79% showed an average EFPM:AGED/EF(PM)(:FRE)s H ratio >10) and fuel types tested, suggesting an important nonfuel dependent source. The results suggest that the potential for forming secondary mass should be considered in future fuel shifts, since the environmental impact is different when only considering the primary emissions.
  •  
21.
  • Boman, Johan, 1955, et al. (författare)
  • PM2.5 at a semi-rural site near Beijing, China
  • 2023
  • Ingår i: X-Ray Spectrometry. - 0049-8246. ; 52:6, s. 447-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Breathing clean air is a human right still not accessible to everyone. In most of the world, the air is polluted, which affects both the environment and human health. To investigate the air pollution situation in a semi-rural part of northern China, particles with a diameter below 2.5 & mu;m (PM2.5) were collected in Changping, 40 km northwest of Beijing in May and June 2016. The particles were analyzed for mass, trace elements, and black carbon (BC). The mean PM2.5 mass was 49 & mu;g/m(3), ranging from 3.1 to 266 & mu;g/m(3). S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, As, and Pb were determined by Energy Dispersive X-Ray Fluorescence (EDXRF). They constituted 4% of the PM2.5 mass, with BC adding another 3%. Enrichment factor evaluation identified S, Ni, Cu, Zn, As, and Pb as the main anthropogenic contributors to environmental impact. A pollution load index (PLI) of 0.03 showed that the site could not be considered as polluted by the trace elements in PM2.5. Positive matrix factorization (PMF) was used for source apportionment of the PM2.5 content. The PMF analysis reveals that a mixture of mineral dust, fossil fuel combustion, industries, and salts were the main sources of air pollution. The non-carcinogenic and carcinogenic health risks were assessed, and both show a small health risk in the short study period. Following the development of PM2.5 concentrations over time in this part of China shows a decreasing trend of PM2.5 pollution, which is promising for the future.
  •  
22.
  • Carlsson, P. T. M., et al. (författare)
  • Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:5, s. 3147-3180
  • Tidskriftsartikel (refereegranskat)abstract
    • The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO(2 )isomers, unimolecular reactions of nitrate RO(2 )radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12 h) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss.
  •  
23.
  • Emanuelsson, Eva U., et al. (författare)
  • Parameterization of Thermal Properties of Aging Secondary Organic Aerosol Produced by Photo-Oxidation of Selected Terpene Mixtures
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:11, s. 6168-6176
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine T-VFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. T-VFR0.5 increased by 0.3 +/- 0.1% (ca. 1 K), while the steepness increased by 0.9 +/- 0.3% per hour of 1 x 10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.
  •  
24.
  •  
25.
  • Hardell, L, et al. (författare)
  • Vestibular schwannoma, tinnitus and cellular telephones
  • 2003
  • Ingår i: Neuroepidemiology. - : S. Karger AG. - 0251-5350 .- 1423-0208. ; 22:2, s. 124-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Cases with tinnitus after using analogue cellular telephones are presented. An increased odds ratio of 3.45, 95% confidence interval (CI) 1.77–6.76, was found for vestibular schwannoma (VS) associated with the use of analogue cell phones. During the time period 1960–1998, the age-standardized incidence of VS in Sweden significantly increased yearly by +2.53% (CI 1.71–3.35). A significant increase in the incidence of VS was only found for the latter of the two time periods 1960–1979 and 1980–1998. For all other brain tumors taken together, the incidence significantly increased yearly by +0.80% (CI 0.59–1.02) for the time period 1960–1998, although the increase was only significant for benign tumors other than VS during 1960–1979.
  •  
26.
  •  
27.
  • McFiggans, Gordon, et al. (författare)
  • Secondary organic aerosol reduced by mixture of atmospheric vapours
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 565:7741, s. 587-593
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).
  •  
28.
  • Nordin, E. Z., et al. (författare)
  • Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:12, s. 31725-31765
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1–2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.
  •  
29.
  • Peng, X., et al. (författare)
  • Photodissociation of particulate nitrate as a source of daytime tropospheric Cl2
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlorine atoms (Cl) are highly reactive and can strongly influence the abundances of climate and air quality-relevant trace gases. Despite extensive research on molecular chlorine (Cl2), a Cl precursor, in the polar atmosphere, its sources in other regions are still poorly understood. Here we report the daytime Cl2 concentrations of up to 1 ppbv observed in a coastal area of Hong Kong, revealing a large daytime source of Cl2 (2.7 pptv s−1 at noon). Field and laboratory experiments indicate that photodissociation of particulate nitrate by sunlight under acidic conditions (pH < 3.0) can activate chloride and account for the observed daytime Cl2 production. The high Cl2 concentrations significantly increased atmospheric oxidation. Given the ubiquitous existence of chloride, nitrate, and acidic aerosols, we propose that nitrate photolysis is a significant daytime chlorine source globally. This so far unaccounted for source of chlorine can have substantial impacts on atmospheric chemistry. © 2022, The Author(s).
  •  
30.
  •  
31.
  • Salvador, Christian Mark, 1989, et al. (författare)
  • Ambient nitro-aromatic compounds - biomass burning versus secondary formation in rural China
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:3, s. 1389-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitro-aromatic compounds (NACs) were measured hourly at a rural site in China during wintertime to monitor the changes due to local and regional impacts of biomass burning (BB). Concurrent and continuous measurements of the concentrations of 16 NACs in the gas and particle phases were performed with a time-of-flight chemical ionization mass spectrometer (CIMS) equipped with a Filter Inlet for Gases and AEROsols (FIGAERO) unit using iodide as the reagent ion. NACs accounted for <2 % of the mass concentration of organic matter (OM) and total particulate matter (PM), but the total particle mass concentrations of these compounds can reach as high as 1000 ng m(-3) (299 ng m(-3) avg), suggesting that they may contribute significantly to the radiative forcing effects of atmospheric particles. Levels of gas-phase NACs were highest during the daytime (15:00-16:00 local time, LT), with a smaller night-time peak around 20:00LT. Box-model simulations showed that this occurred because the rate of NAC production from gas-phase sources exceeded the rate of loss, which occurred mainly via the OH reaction and to a lesser degree via photolysis. Data gathered during extended periods with high contributions from primary BB sources (resulting in 40 %-60 % increases in NAC concentrations) were used to characterize individual NACs with respect to gas-particle partitioning and the contributions of regional secondary processes (i.e. photochemical smog). On days without extensive BB, secondary formation was the dominant source of NACs, and NAC levels correlated strongly with the ambient ozone concentration. Analyses of individual NACs in the regionally aged plumes sampled on these days allowed precursors such as phenol and catechol to be linked to their NAC derivatives (i.e. nitrophenol and nitrocatechol). Correlation analysis using the high time resolution data and box-model simulation results constrained the relationships between these compounds and demonstrated the contribution of secondary formation processes. Furthermore, 13 of 16 NACS were classified according to primary or secondary formation process. Primary emission was the dominant source (accounting for 60 %-70 % of the measured concentrations) of 5 of the 16 studied NACs, but secondary formation was also a significant source. Photochemical smog thus has important effects on brown carbon levels even during wintertime periods dominated by primary air pollution in rural China.
  •  
32.
  • Shainjad, P. M., et al. (författare)
  • Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic Plain
  • 2015
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 49:17, s. 10474-10481
  • Tidskriftsartikel (refereegranskat)abstract
    • The Indo-Gangetic Plain is a region of known high aerosol loading with substantial amounts of carbonaceous aerosols from a variety of sources, often dominated by biomass burning. Although black carbon has been shown to play an important role in the absorption of solar energy and hence direct radiative forcing (DRF), little is known regarding the influence of light absorbing brown carbon (BrC) on the radiative balance in the region. With this in mind, a study was conducted for a one month period during the winter spring season of 2013 in Kanpur, India that measured aerosol chemical and physical properties that were used to estimate the sources of carbonaceous aerosols, as well as parameters necessary to estimate direct forcing by aerosols and the contribution of BrC absorption to the atmospheric energy balance. Positive matrix factorization analyses, based on aerosol mass spectrometer measurements, resolved organic carbon into four factors including low-volatile oxygenated organic aerosols, semivolatile oxygenated organic aerosols, biomass burning, and hydrocarbon like organic aerosols. Three-wavelength absorption and scattering coefficient measurements from a Photo Acoustic Soot Spectrometer were used to estimate aerosol optical properties and estimate the relative contribution of BrC to atmospheric absorption. Mean +/- standard deviation values of short-wave cloud free clear sky DRF exerted by total aerosols at the top of atmosphere, surface and within the atmospheric column are -6.1 +/- 3.2, -31.6 +/- 11, and 25.5 +/- 10.2 W/m(2), respectively. During days dominated by biomass burning the absorption of solar energy by aerosols within the atmosphere increased by similar to 35%, accompanied by a 25% increase in negative surface DRF. DRF at the top of atmosphere during biomass burning days decreased in negative magnitude by several W/m(2) due to enhanced atmospheric absorption by biomass aerosols, including BrC. The contribution of BrC to atmospheric absorption is estimated to range from on average 2.6 W/m(2) for typical ambient conditions to 3.6 W/m(2) during biomass burning days. This suggests that BrC accounts for 10-15% of the total aerosol absorption in the atmosphere, indicating that BrC likely plays an important role in surface and boundary temperature as well as climate.
  •  
33.
  • Tan, W., et al. (författare)
  • Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol: A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions
  • 2021
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 125:34, s. 7502-7519
  • Tidskriftsartikel (refereegranskat)abstract
    • The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 x 10(-12) x exp (505/T) cm(3) molecule(-1) s(-1) to the experimental value k(exp,300K) = 2.8 x 10(-11) cm(3) molecule(-1) s(-1). The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the -CH3 groups (5-10%), -CH2- group, (>70%) and -NH2 group (5-20%), whereas hydrogen abstraction from the -OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)(2)C=NH], 2-iminopropanol [(CH3)(CH2OH)C=NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO(2), CH3C(CH3)(NHNO2)-CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be B-CH3/B-CH2/B-NH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO(2), were detected in the particles by CHARON-PTR-ToF-MS and GCxGC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave Delta H-vap = 80 +/- 16 kJ mol(-1) and an estimated vapor pressure of (1.3 +/- 0.3) x 10(-5) Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented.
  •  
34.
  • Tang, R., et al. (författare)
  • Primary and secondary organic aerosols in summer 2016 in Beijing
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:6, s. 4055-4068
  • Tidskriftsartikel (refereegranskat)abstract
    • To improve air quality, the Beijing government has employed several air pollution control measures since the 2008 Olympics. In order to investigate organic aerosol sources after the implementation of these measures, ambient fine particulate matter was collected at a regional site in Changping (CP) and an urban site at the Peking University Atmosphere Environment Monitoring Station (PKUERS) during the Photochemical Smog in China" field campaign in summer 2016. Chemical mass balance (CMB) modeling and the tracer yield method were used to apportion primary and secondary organic sources. Our results showed that the particle concentration decreased significantly during the last few years. The apportioned primary and secondary sources explained 62.8 ± 18.3 and 80.9 ± 27.2 % of the measured OC at CP and PKUERS, respectively. Vehicular emissions served as the dominant source. Except for gasoline engine emissions, the contributions of all the other primary sources decreased. In addition, the anthropogenic SOC, i.e., toluene SOC, also decreased, implying that deducting primary emissions can reduce anthropogenic SOA. In contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing. Back-trajectory cluster analysis results showed that high mass concentrations of OC were observed when the air mass was from the south. However, the contributions of different primary organic sources were similar, suggesting regional particle pollution. The ozone concentration and temperature correlated well with the SOA concentration. Different correlations between day and night samples suggested different SOA formation pathways. Significant enhancement of SOA with increasing particle water content and acidity was observed in our study, suggesting that aqueous-phase acid-catalyzed reactions may be the important SOA formation mechanism in summer in Beijing. © Author(s) 2018.
  •  
35.
  • Voliotis, A., et al. (författare)
  • Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:21, s. 14147-14175
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive chamber investigation of photochemical secondary organic aerosol (SOA) formation and transformation in mixtures of anthropogenic (o-cresol) and biogenic (alpha-pinene and isoprene) volatile organic compound (VOC) precursors in the presence of NOx and inorganic seed particles was conducted. To enable direct comparison across systems, the initial concentration (hence reactivity) of the systems towards the dominant OH oxidant was adjusted. Comparing experiments conducted in single-precursor systems at various initial reactivity levels (referenced to a nominal base case VOC concentration, e.g. halving the initial concentration for a 1/2 initial reactivity experiment) as well as their binary and ternary mixtures, we show that the molecular interactions from the mixing of the precursors can be investigated and discuss challenges in their interpretation. The observed average SOA particle mass yields (the organic particle mass produced for a mass of VOC consumed) in descending order were found for the following systems: alpha-pinene (32 +/- 7 %), alpha-pinene-o-cresol (28 +/- 9 %), alpha-pinene at 1/2 initial reactivity (21 +/- 5 %), alpha-pinene-isoprene (16 +/- 1 %), alpha-pinene at 1/3 initial reactivity (15 +/- 4 %), o-cresol (13 +/- 3 %), alpha-pinene-o-cresol-isoprene (11 +/- 4 %), o-cresol at 1/2 initial reactivity (11 +/- 3 %), o-cresol-isoprene (6 +/- 2 %), and isoprene (0 +/- 0 %). We find a clear suppression of the SOA mass yield from alpha-pinene when it is mixed with isoprene, whilst no suppression or enhancement of SOA particle yield from o-cresol was found when it was similarly mixed with isoprene. The alpha-pinene-o-cresol system yield appeared to be increased compared to that calculated based on the additivity, whilst in the alpha-pinene-o-cresol-isoprene system the measured and predicted yields were comparable. However, in mixtures in which more than one precursor contributes to the SOA particle mass it is unclear whether changes in the SOA formation potential are attributable to physical or chemical interactions, since the reference basis for the comparison is complex. Online and offline chemical composition as well as SOA particle volatility, water uptake, and "phase" behaviour measurements that were used to interpret the SOA formation and behaviour are introduced and detailed elsewhere.
  •  
36.
  • Westerlund, Jonathan, 1983, et al. (författare)
  • Characterization of fleet emissions from ships through multi-individual determination of size-resolved particle emissions in a coastal area
  • 2015
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 112, s. 159-166
  • Tidskriftsartikel (refereegranskat)abstract
    • Shipping is becoming a major source of particulate air pollution in coastal cities. Here we describe the use of a stationary measurement site to characterize nanoparticle emissions (5.6-560 nm) from a large ship fleet (154 ships) in a harbor region of an emission control area (ECA) under real-world dilution conditions. Emission factors (EFs) are described with respect to particle number (PN), mass (PM), size and volatility. Automatic Identification System data were used to obtain information on ship class, direction, speed and acceleration. Cargo and passenger ships had similar average EFs: 2.79 +/- 0.19 vs. 2.35 +/- 0.20 x 10(16) # (kg fuel)(-1) and 2550 +/- 170 vs. 2200 +/- 130 mg (kg fuel)(-1) respectively. The number size distributions for cargo and passenger ships were unimodal, peaking at similar to 40 nm. Tug-boats and pilots emitted smaller particles with lower EFPN and EFPM. For emissions of non-volatile particles from cargo and passenger ships EFPM increased with decreasing speed and acceleration while the EFPN decreased. The size distributions of the non-volatile particles for all ships contained a large mode at similar to 10 nm. This peak is believed to be formed during plume aging. A detailed understanding of size-resolved particle emissions from individual ships will be important in designing appropriate emission regulations for coastal areas. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
37.
  • Zakey, Ashraf, et al. (författare)
  • Seasonal and spatial variation of atmospheric particulate matter in a developing megacity, the Greater Cairo, Egypt
  • 2008
  • Ingår i: Atmósfera. ; 21:2, s. 171-189
  • Tidskriftsartikel (refereegranskat)abstract
    • As an example of a developing megacity the Greater Cairo (GC) area in Egypt has been evaluated with respect to atmospheric particulate matter (PM) and lead (Pb). Particulate matter was collected during 2001-2002 in the two size fractions PM2.5 and PM10 at 17 sites representing different activities (industrial, urban, residential and background condition). The PM concentrations were generally high, with yearly average PM2.5 and PM10 values of 85 ± 12 and 170 ± 25 μg/m-3, respectively. On an annual scale, the high PM levels were due to many sources that included traffic, waste burning and wind blown dust particles emitted from the desert outside GC and the Moqattam hill inside GC. On a seasonal scale, the PM concentrations were highest in the industrial sector during spring, the dusty season, due to the combined effect of dust storm events and anthropogenic emissions over GC. The lowest seasonal concentrations were recorded in the summer season at the background sites. There was a marked increase in PM levels during the period Octoberto December due to burning of waste from harvested rice in the agriculture area in the Nile Delta (north of Cairo). The highest PM2.5/PM10 ratio was recorded in the urban sector (0.59) while the lowest ratio was recorded in the residential sector (0.32). The PM2.5 and PM10 samples were also analyzed for Pb in order to address the influence of different emission sources. The monthly average concentrations of Pb in both PM2.5 (Pb2.5) and PM10 (Pb10) varied between 0.4 and 1.8 ± μg m-3 at the non industrial sites. The concentrations were significantly higher in the industrial areas, where concentration up to a maximum of 16 ± g m-3 could be observed. Both the high lead and PM concentrations measured are contributing to local environmental pollution. GC is subjected to high concentrations of particulates most of the year. There is no annual limit for PM10 concentrations in the Egyptian law of environment, but comparing to the 24 hour average, PM10 is representing health risks on the long-term that will give both regionally and globally environmental effects. High volume samplers measuring PM10 as daily average shows that the air quality limit value has been exceeded at sites Heliopolis (35), Maadi (6) and 6th October (13) during 60.47, 79.07, and 62.96% of the measuring period of 2001, and at Shoubra El-Kheima (20), El-Qolaly Sq (1), and Abbasiya (36) during 100.0, 91.7, and 89.8% of the measuring period of 2002. Thus, the evaluation of the data presented in this paper will serve as a basis for future regional and global modelling and source apportionment.
  •  
38.
  • Zhou, L. Y., et al. (författare)
  • Emissions and Secondary Formation of Air Pollutants from Modern Heavy-Duty Trucks in Real-World Traffic-Chemical Characteristics Using On-Line Mass Spectrometry
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:21, s. 14515-14525
  • Tidskriftsartikel (refereegranskat)abstract
    • Complying with stricter emissions standards, a new generation of heavy-duty trucks (HDTs) has gradually increased its market share and now accounts for a large percentage of on-road mileage. The potential to improve air quality depends on an actual reduction in both emissions and subsequent formation of secondary pollutants. In this study, the emissions in real-world traffic from Euro VI-compliant HDTs were compared to those from older classes, represented by Euro V, using high-resolution time-of-flight chemical ionization mass spectrometry. Gas-phase primary emissions of several hundred species were observed for 70 HDTs. Furthermore, the particle phase and secondary pollutant formation (gas and particle phase) were evaluated for a number of HDTs. The reduction in primary emission factors (EFs) was evident (similar to 90%) and in line with a reduction of 28-97% for the typical regulated pollutants. Secondary production of most gas- and particle-phase compounds, for example, nitric acid, organic acids, and carbonyls, after photochemical aging in an oxidation flow reactor exceeded the primary emissions (EFAged/EFFresh ratio >= 2). Byproducts from urea-selective catalytic reduction systems had both primary and secondary sources. A non-negative matrix factorization analysis highlighted the issue of vehicle maintenance as a remaining concern. However, the adoption of Euro VI has a significant positive effect on emissions in real-world traffic and should be considered in, for example, urban air quality assessments.
  •  
39.
  • Anderson, Maria, 1983, et al. (författare)
  • Characterization of particles from a marine engine operating at low loads
  • 2015
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1873-2844 .- 1352-2310. ; 101, s. 65-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle emissions from a marine diesel engine operating at low loads with four different fuels were characterized with respect to particle number (PN) and particle mass (PM), size distribution, volatility and chemical composition. The four different fuels used were Swedish Environmental class 1 (MK1) and class 3 diesel (MK3), heavy fuel oil (HFO, 0.12 wt% S) and marine diesel oil (MDO, 0.52 wt% S). The measurements were performed for a marine diesel engine in a test-bed engine lab and the particle emissions were measured with an Engine Exhaust Particle Sizer and a Dust Monitor, giving the number concentrations in the size range of 5.6-560 nm and 300 nm to 20 gm, respectively. To quantify the amount of solid particles a thermodenuder was used. Additionally, filter samples were taken for gravimetric, black carbon (BC) and elemental analysis. The particle emissions showed a bimodal size distribution by number and the number concentrations were dominated by nanoparticles (diameter (Dp) 50 nm generally were solid primary particles. Combustion of HFO resulted in the highest PN and PM concentrations. Emission factors (EFs) for PM and PN for both the total particle emissions and the fraction of primary, solid particles are presented for different fuels and loads. EFs for nitrogen oxides (NOx), BC and some elements (Ca, Fe, V, Ni, Zn) are presented as well. This study contributes to understanding particle emissions from potential future fuels as well as emissions in ports and coastal areas where lower engine loads are common.
  •  
40.
  • Bannan, T. J., et al. (författare)
  • A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application
  • 2019
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 12:3, s. 1429-1439
  • Tidskriftsartikel (refereegranskat)abstract
    • The Filter Inlet for Gases and AEROsols (FIGAERO) is an inlet specifically designed to be coupled with the Aerodyne High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS). The FIGAERO-HR-ToF-CIMS provides simultaneous molecular information relating to both the gas- and particle-phase samples and has been used to extract vapour pressures (VPs) of the compounds desorbing from the filter whilst giving quantitative concentrations in the particle phase. However, such extraction of vapour pressures of the measured particle-phase components requires use of appropriate, well-defined, reference compounds. Vapour pressures for the homologous series of polyethylene glycols (PEG) ((H-(O-CH 2 CH 2 ) n -OH) for n = 3 to n = 8), covering a range of vapour pressures (VP) (10 -1 to 10 -7 Pa) that are atmospherically relevant, have been shown to be reproduced well by a range of different techniques, including Knudsen Effusion Mass Spectrometry (KEMS). This is the first homologous series of compounds for which a number of vapour pressure measurement techniques have been found to be in agreement, indicating the utility as a calibration standard, providing an ideal set of benchmark compounds for accurate characterization of the FIGAERO for extracting vapour pressure of measured compounds in chambers and the real atmosphere. To demonstrate this, single-component and mixture vapour pressure measurements are made using two FIGAERO-HR-ToF-CIMS instruments based on a new calibration determined from the PEG series. VP values extracted from both instruments agree well with those measured by KEMS and reported values from literature, validating this approach for extracting VP data from the FIGAERO. This method is then applied to chamber measurements, and the vapour pressures of known products are estimated. © 2019 Author(s).
  •  
41.
  • Brownwood, B., et al. (författare)
  • Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes
  • 2021
  • Ingår i: Acs Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 785-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO(3)Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 +/- 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with similar to 50 mu g m(-3) inorganic seed aerosol and 2-5 mu g m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically similar to 100 ppb O-3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K-p similar to 10(-3) m(3) mu g(-1)), indicating an average volatility corresponding to a C-5 hydroxy hydroperoxy nitrate.
  •  
42.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:8, s. 20311-20350
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. Several experiments with exclusively anthro- 5 pogenic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μgm−3. The yields (0.5–9 %) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The 10 reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Further 15 more, the OH measurements in combination with the derived yields for anthropogenic SOA enabled application of a simplified model to calculate the chemical turnover of the anthropogenic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (8 %) up to significant fraction (>50 %) providing a suitable range to study the effect of aerosol 20 composition on the aerosol volatility (volume fraction remaining at 343 K: 0.86–0.94). The anthropogenic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of anthropogenic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. A strong positive correlation was found between 25 changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. This change in volatility under dark conditions is likely due to chemical or morphological changes not affecting O/C.
  •  
43.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2013
  • Ingår i: Atmos. Chem. Phys.. - : Copernicus Publications. - 1680-7324. ; 13:5, s. 2837-2855
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m−3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86–0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. The SOA yields, O/C, and f44 (the mass fraction of CO2+ ions in the mass spectra which can be considered as a measure of carboxylic groups) in the mixed photo-chemical experiments could be described as linear combinations of the corresponding properties of the pure systems. For VFR there was in addition an enhancement effect, making the mixed aerosol significantly less volatile than what could be predicted from the pure systems. A strong positive correlation was found between changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. Thus, this change in volatility under dark conditions as well as the anthropogenic enhancement is due to chemical or morphological changes not affecting O/C.
  •  
44.
  • Flores, J. M., et al. (författare)
  • Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:11, s. 5793-5806
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical and physical properties of secondary organic aerosol (SOA) formed by the photochemical degradation of biogenic and anthropogenic volatile organic compounds (VOC) are as yet still poorly constrained. The evolution of the complex refractive index (RI) of SOA, formed from purely biogenic VOC and mixtures of biogenic and anthropogenic VOC, was studied over a diurnal cycle in the SAPHIR photochemical outdoor chamber in Julich, Germany. The correlation of RI with SOA chemical and physical properties such as oxidation level and volatility was examined. The RI was retrieved by a newly developed broadband cavity-enhanced spectrometer for aerosol optical extinction measurements in the UV spectral region (360 to 420 nm). Chemical composition and volatility of the particles were monitored by a high-resolution time-of-flight aerosol mass spectrometer, and a volatility tandem differential mobility analyzer. SOA was formed by ozonolysis of either (i) a mixture of biogenic VOC (alpha-pinene and limonene), (ii) biogenic VOC mixture with subsequent addition of an anthropogenic VOC (p-xylene-d(10)), or (iii) a mixture of biogenic and anthropogenic VOC. The SOA aged by ozone/OH reactions up to 29.5 h was found to be non-absorbing in all cases. The SOA with p-xylene-d(10) showed an increase of the scattering component of the RI correlated with an increase of the O / C ratio and with an increase in the SOA density. There was a greater increase in the scattering component of the RI when the SOA was produced from the mixture of biogenic VOCs and anthropogenic VOC than from the sequential addition of the VOCs after approximately the same ageing time. The increase of the scattering component was inversely correlated with the SOA volatility. Two RI retrievals determined for the pure biogenic SOA showed a constant RI for up to 5 h of ageing. Mass spectral characterization shows the three types of the SOA formed in this study have a significant amount of semivolatile components. The influence of anthropogenic VOCs on the oxygenated organic aerosol as well as the atmospheric implications are discussed.
  •  
45.
  • Hallquist, Åsa M., et al. (författare)
  • Particle and gaseous emissions from individual diesel and CNG buses
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:10, s. 5337-5350
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG)-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz) and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz). The gaseous constituents (CO, HC and NO) were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.). Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs) with different after-treatment, including selective catalytic reduction (SCR), exhaust gas recirculation (EGR) and with and without diesel particulate filter (DPF). The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN) were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs) showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel)−1 and for the CNG buses 41 ± 26 g (kg fuel)−1. An anti-relationship between EFNOx and EFPM was observed especially for buses with no DPF, and there was a positive relationship between EFPM and EFCO.
  •  
46.
  •  
47.
  • Hardell, L, et al. (författare)
  • Cellular and cordless telephones and the risk for brain tumours
  • 2002
  • Ingår i: European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). - : Ovid Technologies (Wolters Kluwer Health). - 0959-8278. ; 11:4, s. 377-386
  • Tidskriftsartikel (refereegranskat)
  •  
48.
  • Hardell, L, et al. (författare)
  • Concentrations of polychlorinated biphenyls in blood and the risk for testicular cancer
  • 2004
  • Ingår i: International Journal of Andrology. - : Wiley. - 0105-6263 .- 1365-2605. ; 27:5, s. 282-290
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing incidence of testicular cancer has been reported from several western countries during the last decades. According to current hypothesis testicular cancer is initiated during the foetal period and exposure to endocrine disruptors such as some persistent organic pollutants has been of concern. We have previously reported the results for concentrations of polychlorinated biphenyls (PCBs), p,p'-dichlorodiphenyl-dichloroethylene (pp'-DDE), hexachlorobenzene (HCB) and chlordanes in 58 cases with testicular cancer, 61 age-matched controls and 44 case mothers and 45 control mothers. In that report, significant increase of odds ratio (OR) was found for sum of PCBs, HCB, trans- and cis-nonachlordane in case mothers. These data have now been further analysed for 37 congeners of PCBs. No significant differences were found among cases and controls. However, case mothers had significantly increased concentrations of a number of PCB congeners. A priori decided grouping of PCBs yielded for oestrogenic PCBs OR = 2.4, 95% confidence interval (CI) = 0.95-6.0, enzyme-inducing PCBsOR = 2.6, 95% CI = 1.03-6.5 and toxic equivalents (TEQ) yielded OR = 3.3, 95% CI = 1.3-8.4. These data further elucidate the role of foetal exposure to different PCB congeners in the aetiology of testicular cancer.
  •  
49.
  • Hardell, L, et al. (författare)
  • Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer
  • 2003
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 111:7, s. 930-934
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing incidence of testicular cancer has been reported from several countries in the Western world during the last decades. According to current hypothesis, testicular cancer is initiated during the fetal period, and exposure to endocrine disruptors, i.e., xenoestrogens, has been of concern. In this investigation we studied the concentrations of the sum of 38 polychlorinated biphenyls (PCBs), p,p'-dichlorodiphenyl-dichloroethylene, hexachlorobenzene (HCB), and chlordanes, in 61 cases with testicular cancer and 58 age-matched controls. Furthermore, case and control mothers were also asked to participate, and 44 case mothers and 45 control mothers agreed. They were of similar age. In cases only the concentration on lipid basis of cis-nonachlordane was significantly increased, whereas case mothers showed significantly increased concentrations of the sum of PCBs, HCB, trans- and cis-nonachlordane, and the sum of chlordanes. Among case mothers the sum of PCBs yielded an odds ratio (OR) of 3.8, 95% confidence interval (CI), 1.4-10 was calculated using the median concentration for the control mothers as cutoff value. For HCB, OR = 4.4 (95% CI, 1.7-12), for trans-nonachlordane, OR = 4.1 (95% CI, 1.5-11), for cis-nonachlordane, OR = 3.1 (95% CI, 1.2-7.8), and for sum of chlordanes, OR = 1.9 (95% CI, 0.7-5.0). No consistent different risk pattern was found for seminoma. or nonseminoma testicular cancer.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 81
Typ av publikation
tidskriftsartikel (76)
konferensbidrag (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Hallquist, Mattias, ... (63)
Kiendler-Scharr, A. (15)
Hu, M. (14)
Tillmann, R. (14)
Guo, S, (13)
Le Breton, Michael, ... (9)
visa fler...
Mentel, T. F. (9)
Fuchs, H. (9)
McFiggans, G. (8)
Zheng, J. (7)
Bannan, T. J. (7)
Priestley, Michael (7)
Pathak, Ravi K. (7)
Hallquist, A (7)
Wu, Y. S. (7)
Wu, Z. J. (7)
Kulmala, M (6)
Carlberg, M (6)
Hardell, L (6)
Wildt, J. (6)
Saathoff, H. (6)
Liu, Q. Y. (6)
Wahner, A. (6)
Swietlicki, Erik (5)
Pagels, Joakim (5)
Salo, Kent, 1967 (5)
Hallquist, A. M. (5)
Pettersson, Jan B. C ... (5)
Percival, C. J. (5)
Hallquist, Åsa M. (5)
Tsiligiannis, Epamei ... (5)
Thornton, J. A. (5)
Wang, T. (4)
Li, X. (4)
Prevot, A. S. H. (4)
Simpson, David, 1961 (4)
Svenningsson, Birgit ... (4)
Baltensperger, U. (4)
Donahue, N. M. (4)
Ehn, M. (4)
Ljungström, Evert, 1 ... (4)
Kong, Xiangrui (4)
Novelli, A (4)
Alfarra, M. R. (4)
Brownwood, B. (4)
Carlsson, P. T. M. (4)
Brown, S. S. (4)
Fry, J. L. (4)
Watne, Ågot, 1983 (4)
Lutz, Anna, 1986 (4)
visa färre...
Lärosäte
Göteborgs universitet (66)
Chalmers tekniska högskola (11)
Lunds universitet (9)
Karolinska Institutet (7)
IVL Svenska Miljöinstitutet (4)
Stockholms universitet (3)
visa fler...
Linköpings universitet (3)
VTI - Statens väg- och transportforskningsinstitut (2)
Umeå universitet (1)
Uppsala universitet (1)
visa färre...
Språk
Engelska (81)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (69)
Teknik (9)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy