SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hallström Björn M.) "

Search: WFRF:(Hallström Björn M.)

  • Result 1-46 of 46
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lee, Sunjae, et al. (author)
  • Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance
  • 2016
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 24:1, s. 172-184
  • Journal article (peer-reviewed)abstract
    • To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR.
  •  
2.
  • Carreras-Puigvert, Jordi, et al. (author)
  • A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family
  • 2017
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 8:1
  • Journal article (peer-reviewed)abstract
    • The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA processing. Although highly conserved throughout all organisms, their biological roles and biochemical redundancies remain largely unclear. To address this, we globally resolve their individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we generate sequence alignment analyses revealing four major structural classes. To a certain extent, their substrate preference redundancies correlate with structural classes, thus linking structure and activity relationships. To elucidate interdependence among the NUDIX hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we integrate all data creating a comprehensive NUDIX enzyme profile map, which will prove fundamental to understanding their biological functionality.
  •  
3.
  • O'Hurley, Gillian, et al. (author)
  • Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer.
  • 2015
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:8
  • Journal article (peer-reviewed)abstract
    • To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL.
  •  
4.
  • Danielsson, Angelika, et al. (author)
  • The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12, s. e115421-
  • Journal article (peer-reviewed)abstract
    • The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects.
  •  
5.
  • Dusart, Philip, et al. (author)
  • A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-Associated Endothelial Changes
  • 2019
  • In: Cell Reports. - : CELL PRESS. - 2211-1247. ; 29:6, s. 1690-
  • Journal article (peer-reviewed)abstract
    • Changes in the endothelium of the cerebral vasculature can contribute to inflammatory, thrombotic, and malignant disorders. The importance of defining cell-type-specific genes and their modification in disease is increasingly recognized. Here, we develop a bioinformatics-based approach to identify normal brain cell-enriched genes, using bulk RNA sequencing (RNA-seq) data from 238 normal human cortex samples from 2 independent cohorts. We compare endothelial cell-enriched gene profiles with astrocyte, oligodendrocyte, neuron, and microglial cell profiles. Endothelial changes in malignant disease are explored using RNA-seq data from 516 lower-grade gliomas and 401 glioblastomas. Lower-grade gliomas appear to be an "endothelial intermediate'' between normal brain and glioblastoma. We apply our method for the prediction of glioblastoma-specific endothelial biomarkers, providing potential diagnostic or therapeutic targets. In summary, we provide a roadmap of endothelial cell identity in normal and malignant brain, using a method developed to resolve bulk RNA-seq into constituent cell-type-enriched profiles.
  •  
6.
  • Edfors, Fredrik, et al. (author)
  • Gene-specific correlation of RNA and protein levels in human cells and tissues
  • 2016
  • In: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 12:10
  • Journal article (peer-reviewed)abstract
    • An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.
  •  
7.
  • Fagerberg, Linn, et al. (author)
  • Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics
  • 2014
  • In: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 13:2, s. 397-406
  • Journal article (peer-reviewed)abstract
    • Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.
  •  
8.
  • Gallus, S., et al. (author)
  • Evolutionary histories of transposable elements in the genome of the largest living marsupial carnivore, the tasmanian devil
  • 2015
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 32:5, s. 1268-1283
  • Journal article (peer-reviewed)abstract
    • The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1-MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1-MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions.
  •  
9.
  • Hansen, N. L., et al. (author)
  • The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily
  • 2017
  • In: The Plant Journal. - : Blackwell Publishing. - 0960-7412 .- 1365-313X. ; 89:3, s. 429-441
  • Journal article (peer-reviewed)abstract
    • Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-epoxide lactone triptolide was the first of many diterpenoids identified, attracting interest due to the spectrum of bioactivities. To probe the genetic underpinning of diterpenoid diversity, an expansion of the class II diterpene synthase (diTPS) family was recently identified in a leaf transcriptome. Following detection of triptolide and simple diterpene scaffolds in the root, we sequenced and mined the root transcriptome. This allowed identification of the root-specific complement of TPSs and an expansion in the class I diTPS family. Functional characterization of the class II diTPSs established their activities in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii. The absence of activity-forming abietane-type diterpenes encouraged further testing of TPSs outside the canonical class I diTPS family. TwTPS27, close relative of mono-TPSs, was found to couple with TwTPS9, converting normal-copalyl diphosphate to miltiradiene. The phylogenetic distance to established diTPSs indicates neo-functionalization of TwTPS27 into a diTPS, a function not previously observed in the TPS-b subfamily. This example of evolutionary convergence expands the functionality of TPSs in the TPS-b family and may contribute miltiradiene to the diterpenoids of T. wilfordii.
  •  
10.
  • Uhlén, Mathias, et al. (author)
  • Tissue-based map of the human proteome
  • 2015
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6220, s. 1260419-
  • Journal article (peer-reviewed)abstract
    • Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.
  •  
11.
  • van Wijk, Xander M., et al. (author)
  • Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for Bacterial Invasion
  • 2017
  • In: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 8:1
  • Journal article (peer-reviewed)abstract
    • To understand the role of glycosaminoglycans in bacterial cellular invasion, xylosyltransferase-deficient mutants of Chinese hamster ovary (CHO) cells were created using clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (CRISPR-cas9) gene targeting. When these mutants were compared to the pgsA745 cell line, a CHO xylosyltransferase mutant generated previously using chemical mutagenesis, an unexpected result was obtained. Bacterial invasion of pgsA745 cells by group B Streptococcus (GBS), group A Streptococcus, and Staphylococcus aureus was markedly reduced compared to the invasion of wild-type cells, but newly generated CRISPR-cas9 mutants were only resistant to GBS. Invasion of pgsA745 cells was not restored by transfection with xylosyltransferase, suggesting that an additional mutation conferring panresistance to multiple bacteria was present in pgsA745 cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit alpha 2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-alpha 2 beta 1 gamma 1/laminin-alpha 2 beta 2 gamma 1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin alpha 2 is important for cellular invasion by a number of bacterial pathogens. IMPORTANCE Pathogenic bacteria penetrate host cellular barriers by attachment to extracellular matrix molecules, such as proteoglycans, laminins, and collagens, leading to invasion of epithelial and endothelial cells. Here, we show that cellular invasion by the human pathogens group B Streptococcus, group A Streptococcus, and Staphylococcus aureus depends on a specific domain of the laminin alpha 2 subunit. This finding may provide new leads for the molecular pathogenesis of these bacteria and the development of novel antimicrobial drugs.
  •  
12.
  • Andersson, Sandra, et al. (author)
  • The Transcriptomic and Proteomic Landscapes of Bone Marrow and Secondary Lymphoid Tissues
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12, s. e115911-
  • Journal article (peer-reviewed)abstract
    • Background: The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. Results: An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. Conclusions: In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.
  •  
13.
  • Bergman, Julia, et al. (author)
  • The human adrenal gland proteome defined by transcriptomics and antibody-based profiling.
  • 2017
  • In: Endocrinology. - : Endocrine Society. - 0013-7227 .- 1945-7170. ; 158:2, s. 239-251
  • Journal article (peer-reviewed)abstract
    • The adrenal gland is a composite endocrine organ with vital functions that include the synthesis and release of glucocorticoids and catecholamines. To define the molecular landscape that underlies the specific functions of the adrenal gland, we combined a genome-wide transcriptomics approach using messenger RNA sequencing of human tissues with immunohistochemistry-based protein profiling on tissue microarrays. Approximately two-thirds of all putative protein coding genes were expressed in the adrenal gland, and the analysis identified 253 genes with an elevated pattern of expression in the adrenal gland, with only 37 genes showing a markedly greater expression level (more than fivefold) in the adrenal gland compared with 31 other normal human tissue types analyzed. The analyses allowed for an assessment of the relative expression levels for well-known proteins involved in adrenal gland function but also identified previously poorly characterized proteins in the adrenal cortex, such as the FERM (4.1 protein, ezrin, radixin, moesin) domain containing 5 and the nephroblastoma overexpressed (NOV) protein homolog. We have provided a global analysis of the adrenal gland transcriptome and proteome, with a comprehensive list of genes with elevated expression in the adrenal gland and spatial information with examples of protein expression patterns for corresponding proteins. These genes and proteins constitute important starting points for an improved understanding of the normal function and pathophysiology of the adrenal glands.
  •  
14.
  • Bidon, Tobias, et al. (author)
  • Brown and Polar Bear Y Chromosomes Reveal Extensive Male-Biased Gene Flow within Brother Lineages
  • 2014
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 31:6, s. 1353-1363
  • Journal article (peer-reviewed)abstract
    • Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms.
  •  
15.
  • Butler, L. M., et al. (author)
  • Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome
  • 2016
  • In: Cell Systems. - : Cell Press. - 2405-4712. ; 3:3, s. 287-301.e3
  • Journal article (peer-reviewed)abstract
    • Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
  •  
16.
  • Caspeta-Guadarrama, Luis, 1974, et al. (author)
  • Altered sterol composition renders yeast thermotolerant
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6205, s. 75-78
  • Journal article (peer-reviewed)abstract
    • Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at >= 40 degrees C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at >= 40 degrees C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype.
  •  
17.
  • Djureinovic, Dijana, et al. (author)
  • Profiling cancer testis antigens in non-small-cell lung cancer
  • 2016
  • In: JCI INSIGHT. - : American Society for Clinical Investigation. - 2379-3708. ; 1:10
  • Journal article (peer-reviewed)abstract
    • Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
  •  
18.
  • Eraslan, Basak, et al. (author)
  • Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues
  • 2019
  • In: Molecular Systems Biology. - : WILEY. - 1744-4292 .- 1744-4292. ; 15:2
  • Journal article (peer-reviewed)abstract
    • Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.
  •  
19.
  • Fletcher, Eugene, 1986, et al. (author)
  • Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments
  • 2017
  • In: Metabolic engineering. - : Academic Press. - 1096-7176 .- 1096-7184. ; 39, s. 19-28
  • Journal article (peer-reviewed)abstract
    • Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3 M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest.
  •  
20.
  • Habuka, Masato, et al. (author)
  • The Kidney Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12, s. e116125-
  • Journal article (peer-reviewed)abstract
    • To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n=11), proximal tubules (n=120), distal tubules (n=9) or collecting ducts (n=8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease.
  •  
21.
  • Haglund, Felix, et al. (author)
  • Inflammatory infiltrates in parathyroid tumors
  • 2017
  • In: European Journal of Endocrinology. - 0804-4643 .- 1479-683X. ; 177:6, s. 445-453
  • Journal article (peer-reviewed)abstract
    • Context: Inflammatory infiltrates are sometimes present in solid tumors and may be coupled to clinical behavior or etiology. Infectious viruses contribute to tumorigenesis in a significant fraction of human neoplasias. Objective: Characterize inflammatory infiltrates and possible viral transcription in primary hyperparathyroidism. Design: From the period 2007 to 2016, a total of 55 parathyroid tumors (51 adenomas and 4 hyperplasias) with prominent inflammatory infiltrates were identified from more than 2000 parathyroid tumors in the pathology archives, and investigated by immunohistochemistry for CD4, CD8, CD20 and CD45 and scored as +0, +1 or +2. Clinicopathological data were compared to 142 parathyroid adenomas without histological evidence of inflammation. Transcriptome sequencing was performed for 13 parathyroid tumors (four inflammatory, 9 non-inflammatory) to identify potential viral transcripts. Results: Tumors had prominent germinal center-like nodular (+2) lymphocytic infiltrates consisting of T and B lymphocytes (31%) and/or diffuse (+1-2) infiltrates of predominantly CD8+T lymphocytes (84%). In the majority of cases with adjacent normal parathyroid tissue, the normal rim was unaffected by the inflammatory infiltrates (96%). Presence of inflammatory infiltrates was associated with higher levels of serum-PTH (P = 0.007) and oxyphilic differentiation (P = 0.002). Co-existent autoimmune disease was observed in 27% of patients with inflammatory infiltrates, which in turn was associated with oxyphilic differentiation (P = 0.041). Additionally, prescription of anti-inflammatory drugs was associated with lower serum ionized calcium (P = 0.037). Conclusions: No evidence of virus-like sequences in the parathyroid tumors could be found by transcriptome sequencing, suggesting that other factors may contribute to attract the immune system to the parathyroid tumor tissue.
  •  
22.
  • Hailer, F., et al. (author)
  • Response to comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage"
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 340:6127, s. 1522-b
  • Journal article (peer-reviewed)abstract
    • Nakagome et al. reanalyzed some of our data and assert that we cannot refute the mitochondrial DNA-based scenario for polar bear evolution. Their single-locus test statistic is strongly affected by introgression and incomplete lineage sorting, whereas our multilocus approaches are better suited to recover the true species relationships. Indeed, our sister-lineage model receives high support in a Bayesian model comparison.
  •  
23.
  • Huang, Mingtao, 1984, et al. (author)
  • Efficient protein production by yeast requires global tuning of metabolism
  • 2017
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 8:1
  • Journal article (peer-reviewed)abstract
    • The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion.
  •  
24.
  • Huang, Mingtao, 1984, et al. (author)
  • Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast
  • 2015
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:34, s. E4689-E4696
  • Journal article (peer-reviewed)abstract
    • There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.
  •  
25.
  • Jarmander, Johan, et al. (author)
  • Simultaneous Uptake of Lignocellulose- Based Monosaccharides by Escherichia Coli
  • 2014
  • In: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 111:6, s. 1108-1115
  • Journal article (peer-reviewed)abstract
    • Lignocellulosic waste is a naturally abundant biomass and is therefore an attractive material to use in second generation biorefineries. Microbial growth on the monosaccharides present in hydrolyzed lignocellulose is however associated with several obstacles whereof one is the lack of simultaneous uptake of the sugars. We have studied the aerobic growth of Escherichia coli on D-glucose, D-xylose, and L-arabinose and for simultaneous uptake to occur, both the carbon catabolite repression mechanism (CCR) and the AraC repression of xylose uptake and metabolism had to be removed. The strain AF1000 is a MC4100 derivative that is only able to assimilate arabinose after a considerable lag phase, which is unsuitable for commercial production. This strain was successfully adapted to growth on L-arabinose and this led to simultaneous uptake of arabinose and xylose in a diauxic growth mode following glucose consumption. In this strain, a deletion in the phosphoenolpyruvate:phosphotransferase system (PTS) for glucose uptake, the ptsG mutation, was introduced. The resulting strain, PPA652ara simultaneously consumed all three monosaccharides at a maximum specific growth rate of 0.59h(-1), 55% higher than for the ptsG mutant alone. Also, no residual sugar was present in the cultivation medium. The potential of PPA652ara is further acknowledged by the performance of AF1000 during fed-batch processing on a mixture of D-glucose, D-xylose, and L-arabinose. The conclusion is that without the removal of both layers of carbon uptake control, this process results in accumulation of pentoses and leads to a reduction of the specific growth rate by 30%.
  •  
26.
  • Kampf, Caroline, et al. (author)
  • Defining the human gallbladder proteome by transcriptomics and affinity proteomics
  • 2014
  • In: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 14:21-22, s. 2498-2507
  • Journal article (peer-reviewed)abstract
    • Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics.
  •  
27.
  • Kampf, Caroline, et al. (author)
  • The human liver-specific proteome defined by transcriptomics and antibody-based profiling
  • 2014
  • In: FASEB Journal. - : Wiley. - 1530-6860 .- 0892-6638. ; 28:7, s. 2901-2914
  • Journal article (peer-reviewed)abstract
    • Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.
  •  
28.
  • Kildegaard, Kanchana R., et al. (author)
  • Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance
  • 2014
  • In: Metabolic engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 26, s. 57-66
  • Journal article (peer-reviewed)abstract
    • Biologically produced 3-hydroxypropionic acid (3HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial scale production there is a need for robust cell factories tolerant to high concentration of 3HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hyclroxymerhyl)glutathione dehydrogenase. Based on our findings, we propose that 3HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin ) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells. (C) 2014 International Metabolic Engineering Society Published by Elsevier Inc. On behalf of International Metabolic Engineering Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/)
  •  
29.
  • Kumar, Vikas, et al. (author)
  • Coalescent-Based Genome Analyses Resolve the Early Branches of the Euarchontoglires
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4, s. e60019-
  • Journal article (peer-reviewed)abstract
    • Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods.
  •  
30.
  • Lahtvee, Petri-Jaan, 1985, et al. (author)
  • Adaptation to different types of stress converge on mitochondrial metabolism
  • 2016
  • In: Molecular Biology of the Cell. - : American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 27:15, s. 2505-2514
  • Journal article (peer-reviewed)abstract
    • Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism.
  •  
31.
  • Lindskog, Cecilia, et al. (author)
  • The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling
  • 2015
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 16
  • Journal article (peer-reviewed)abstract
    • Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level. Results: Our study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction. Conclusions: Our results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease.
  •  
32.
  • Lundqvist, Magnus, et al. (author)
  • Solid-phase cloning for high-throughput assembly of single and multiple DNA parts
  • 2015
  • In: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 43:7
  • Journal article (peer-reviewed)abstract
    • We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.
  •  
33.
  • Luo, Dan, et al. (author)
  • Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L.
  • 2016
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:34, s. E5082-E5089
  • Journal article (peer-reviewed)abstract
    • The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon-carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids.
  •  
34.
  • Mardinoglu, Adil, 1982, et al. (author)
  • Defining the Human Adipose Tissue Proteome To Reveal Metabolic Alterations in Obesity
  • 2014
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:11, s. 5106-5119
  • Journal article (peer-reviewed)abstract
    • White adipose tissue (WAT) has a major role in the progression of obesity. Here, we combined data from RNA-Seq and antibody-based immunohistochemistry to describe the normal physiology of human WAT obtained from three female subjects and explored WAT-specific genes by comparing WAT to 26 other major human tissues. Using the protein evidence in WAT, we validated the content of a genome-scale metabolic model for adipocytes. We employed this high-quality model for the analysis of subcutaneous adipose tissue (SAT) gene expression data obtained from subjects included in the Swedish Obese Subjects Sib Pair study to reveal molecular differences between lean and obese individuals. We integrated SAT gene expression and plasma metabolomics data, investigated the contribution of the metabolic differences in the mitochondria of SAT to the occurrence of obesity, and eventually identified cytosolic branched-chain amino acid (BCAA) transaminase 1 as a potential target that can be used for drug development. We observed decreased glutaminolysis and alterations in the BCAAs metabolism in SAT of obese subjects compared to lean subjects. We also provided mechanistic explanations for the changes in the plasma level of BCAAs, glutamate, pyruvate, and alpha-ketoglutarate in obese subjects. Finally, we validated a subset of our model-based predictions in 20 SAT samples obtained from 10 lean and 10 obese male and female subjects.
  •  
35.
  •  
36.
  • Palmgren, Michael, et al. (author)
  • AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes
  • 2017
  • In: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 12:4
  • Journal article (peer-reviewed)abstract
    • Organisms have evolved the ability to tolerate toxic substances in their environments, often by producing metabolic enzymes that efficiently detoxify the toxicant. Inorganic arsenic is one of the most toxic and carcinogenic substances in the environment, but many organisms, including humans, metabolise inorganic arsenic to less toxic metabolites. This multistep process produces mono-, di-, and trimethylated arsenic metabolites, which the organism excretes. In humans, arsenite methyltransferase (AS3MT) appears to be the main metabolic enzyme that methylates arsenic. In this study, we examined the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic during evolution. These findings are supported by the observation that genetic variation in AS3MT correlates with the capacity to methylate arsenic. Adaptation to arsenic thus serves as a model for how organisms evolve to survive under toxic conditions.
  •  
37.
  • Palmgren, Michael, et al. (author)
  • Evolution of P2A and P5A ATPases : ancient gene duplications and the red algal connection to green plants revisited
  • 2020
  • In: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 168:3, s. 630-647
  • Journal article (peer-reviewed)abstract
    • In a search for slowly evolving nuclear genes that may cast light on the deep evolution of plants, we carried out phylogenetic analyses of two well-characterized subfamilies of P-type pumps (P2A and P5A ATPases) from representative branches of the eukaryotic tree of life. Both P-type ATPase genes were duplicated very early in eukaryotic evolution and before the divergence of the present eukaryotic supergroups. Synapomorphies identified in the sequences provide evidence that green plants and red algae are more distantly related than are green plants and eukaryotic supergroups in which secondary or tertiary plastids are common, such as several groups belonging to the clade that includes Stramenopiles, Alveolata, Rhizaria, Cryptophyta and Haptophyta (SAR). We propose that red algae branched off soon after the first photosynthesizing eukaryote had acquired a primary plastid, while in another lineage that led to SAR, the primary plastid was lost but, in some cases, regained as a secondary or tertiary plastid.
  •  
38.
  • Pateraki, Irini, et al. (author)
  • Total biosynthesis of the cyclic AMP booster for skolin from Coleus forskohlii
  • 2017
  • In: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 6
  • Journal article (peer-reviewed)abstract
    • Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.
  •  
39.
  • Sjöstedt, Evelina, et al. (author)
  • Defining the Human Brain Proteome Using Transcriptomics and Antibody-Based Profiling with a Focus on the Cerebral Cortex
  • 2015
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
  • Journal article (peer-reviewed)abstract
    • The mammalian brain is a complex organ composed of many specialized cells, harboring sets of both common, widely distributed, as well as specialized and discretely localized proteins. Here we focus on the human brain, utilizing transcriptomics and public available Human Protein Atlas (HPA) data to analyze brain-enriched (frontal cortex) polyadenylated messenger RNA and long non-coding RNA and generate a genome-wide draft of global and cellular expression patterns of the brain. Based on transcriptomics analysis of altogether 27 tissues, we have estimated that approximately 3% (n=571) of all protein coding genes and 13% (n=87) of the long non-coding genes expressed in the human brain are enriched, having at least five times higher expression levels in brain as compared to any of the other analyzed peripheral tissues. Based on gene ontology analysis and detailed annotation using antibody-based tissue micro array analysis of the corresponding proteins, we found the majority of brain-enriched protein coding genes to be expressed in astrocytes, oligodendrocytes or in neurons with molecular properties linked to synaptic transmission and brain development. Detailed analysis of the transcripts and the genetic landscape of brainenriched coding and non-coding genes revealed brain-enriched splice variants. Several clusters of neighboring brain-enriched genes were also identified, suggesting regulation of gene expression on the chromatin level. This multi-angle approach uncovered the brainenriched transcriptome and linked genes to cell types and functions, providing novel insights into the molecular foundation of this highly specialized organ.
  •  
40.
  • Stadler, Charlotte, et al. (author)
  • RNA- and Antibody-Based Profiling of the Human Proteome with Focus on Chromosome 19
  • 2014
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:4, s. 2019-2027
  • Journal article (peer-reviewed)abstract
    • An important part of the Human Proteome Project is to characterize the protein complement of the genome with antibody-based profiling. Within the framework of this effort, a new version 12 of the Human Protein Atlas (www.proteinatlas.org) has been launched, including transcriptomics data for 27 tissues and 44 cell lines to complement the protein expression data from antibody-based profiling. Besides the extensive addition of transcriptomics data, the Human Protein Atlas now contains antibody-based protein profiles for 82% of the 20 329 putative protein-coding genes. The comprehensive data resulting from RNA-seq analysis and antibody-based profiling performed within the Human Protein Atlas as well as information from UniProt were used to generate evidence summary scores for each of the 20 329 genes, of which 94% now have experimental evidence at least at transcript level. The evidence scores for all individual genes are displayed with regards to both RNA- and antibody-based protein profiles, including chromosome-centric visualizations. An analysis of the human chromosome 19 shows that similar to 43% of the genes are expressed at the transcript level in all 27 tissues analyzed, suggesting a "house-keeping" function, while 12% of the genes show a more tissue-specific pattern with enriched expression in one of the analyzed tissues only.
  •  
41.
  • Su, Yu-Ching, et al. (author)
  • Impact of sequence diversity in the Moraxella catarrhalis UspA2/UspA2H head domain on vitronectin binding and antigenic variation
  • 2013
  • In: Microbes and infection. - : Elsevier BV. - 1286-4579 .- 1769-714X. ; 15:5, s. 375-387
  • Journal article (peer-reviewed)abstract
    • The nasopharyngeal pathogen Moraxella catarrhalis recruits vitronectin to subvert complement-mediated killing. Ubiquitous surface protein (UspA) 2 and its hybrid form UspA2H bind vitronectin at the highly diverse N-terminal head domain. Here we characterized the sequence diversity of the head domain in multiple M. catarrhalis clinical isolates (n = 51) with focus on binding of vitronectin. The head domain of the uspA2 genes from 40 isolates were clustered according to an N-terminal sequence motif of UspA2 (NTER2), i.e., NTER2A (55% of uspA2 variants), NTER2B (32.5%), NTER2C (5%), and finally a group without an NTER2 (7.5%). Isolates harbouring the uspA2H gene (n = 11) contained N-terminal GGG repeats. Vitronectin binding to isolates having UspA2 did not correlate to variation in the NTER2 motifs but occurred in UspA2H containing 6 or >= 11 of GGG repeats. Analyses of recombinant UspA2/UspA2H head domains of multiple variants showed UspA2-dependent binding to the C-terminal of vitronectin. Furthermore, polyclonal anti-UspA2 antibodies revealed that the head domain of the majority of Moraxella UspA2/2H was antigenically unrelated, whereas the full length molecules were recognized. In conclusion, the head domains of UspA2/2H have extensive sequence polymorphism without losing vitronectin-binding capacity promoting a general evasion of the host immune system.
  •  
42.
  • Uhlén, Mathias, et al. (author)
  • Transcriptomics resources of human tissues and organs
  • 2016
  • In: Molecular Systems Biology. - : Blackwell Publishing. - 1744-4292 .- 1744-4292. ; 12:4
  • Research review (peer-reviewed)abstract
    • Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.
  •  
43.
  • Wang, Dongxue, et al. (author)
  • A deep proteome and transcriptome abundance atlas of 29 healthy human tissues
  • 2019
  • In: Molecular Systems Biology. - : WILEY. - 1744-4292 .- 1744-4292. ; 15:2
  • Journal article (peer-reviewed)abstract
    • Genome-, transcriptome- and proteome-wide measurements provide insights into how biological systems are regulated. However, fundamental aspects relating to which human proteins exist, where they are expressed and in which quantities are not fully understood. Therefore, we generated a quantitative proteome and transcriptome abundance atlas of 29 paired healthy human tissues from the Human Protein Atlas project representing human genes by 18,072 transcripts and 13,640 proteins including 37 without prior protein-level evidence. The analysis revealed that hundreds of proteins, particularly in testis, could not be detected even for highly expressed mRNAs, that few proteins show tissue-specific expression, that strong differences between mRNA and protein quantities within and across tissues exist and that protein expression is often more stable across tissues than that of transcripts. Only 238 of 9,848 amino acid variants found by exome sequencing could be confidently detected at the protein level showing that proteogenomics remains challenging, needs better computational methods and requires rigorous validation. Many uses of this resource can be envisaged including the study of gene/protein expression regulation and biomarker specificity evaluation.
  •  
44.
  • Yu, Nancy Yiu-Lin, et al. (author)
  • Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium
  • 2015
  • In: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 43:14, s. 6787-6798
  • Journal article (peer-reviewed)abstract
    • Understanding the normal state of human tissue transcriptome profiles is essential for recognizing tissue disease states and identifying disease markers. Recently, the Human Protein Atlas and the FANTOM5 consortium have each published extensive transcriptome data for human samples using Illumina-sequenced RNA-Seq and Heliscope-sequenced CAGE. Here, we report on the first large-scale complex tissue transcriptome comparison between full-length versus 5'-capped mRNA sequencing data. Overall gene expression correlation was high between the 22 corresponding tissues analyzed (R > 0.8). For genes ubiquitously expressed across all tissues, the two data sets showed high genome-wide correlation (91% agreement), with differences observed for a small number of individual genes indicating the need to update their gene models. Among the identified single-tissue enriched genes, up to 75% showed consensus of 7-fold enrichment in the same tissue in both methods, while another 17% exhibited multiple tissue enrichment and/or high expression variety in the other data set, likely dependent on the cell type proportions included in each tissue sample. Our results show that RNA-Seq and CAGE tissue transcriptome data sets are highly complementary for improving gene model annotations and highlight biological complexities within tissue transcriptomes. Furthermore, integration with image-based protein expression data is highly advantageous for understanding expression specificities for many genes.
  •  
45.
  • Zhang, Yiming, 1986, et al. (author)
  • Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain
  • 2015
  • In: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 14
  • Journal article (peer-reviewed)abstract
    • Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole carbon source, and requires supplementation of C2 compounds to the medium in order to meet the requirement for cytosolic acetyl-CoA for biosynthesis of fatty acids and ergosterol. Results: In this study, a Pdc negative strain was adaptively evolved for improved growth in glucose medium via serial transfer, resulting in three independently evolved strains, which were able to grow in minimal medium containing glucose as the sole carbon source at the maximum specific rates of 0.138, 0.148, 0.141 h(-1), respectively. Several genetic changes were identified in the evolved Pdc negative strains by genomic DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase, and RPD3 encoding a histone deacetylase. Reverse engineering of the non-evolved Pdc negative strain through introduction of the MTH1(81D) allele restored its growth on glucose at a maximum specific rate of 0.053 h(-1) in minimal medium with 2% glucose, and the CIT1 deletion in the reverse engineered strain further increased the maximum specific growth rate to 0.069 h(-1). Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure production of cytosolic acetyl-CoA in the Pdc negative strain.
  •  
46.
  • Zieba, Agata, et al. (author)
  • The Human Endometrium-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling
  • 2015
  • In: Omics. - : MARY ANN LIEBERT, INC. - 1536-2310 .- 1557-8100. ; 19:11, s. 659-668
  • Journal article (peer-reviewed)abstract
    • The human uterus includes the complex endometrial mucosa, the endometrium that undergoes dynamic, hormone-dependent alterations throughout the life of fertile females. Here we have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to analyze gene expression patterns in the normal endometrium. Human endometrial tissues from five women were used for deep sequencing (RNA-Seq). The mRNA and protein expression data from the endometrium were compared to 31 (RNA) and 44 (protein) other normal tissue types, to identify genes with elevated expression in the endometrium and to localize the expression of corresponding proteins at a cellular resolution. Based on the expression levels of transcripts, we could classify all putative human protein coding genes into categories defined by expression patterns and found altogether 101 genes that showed an elevated pattern of expression in the endometrium, with only four genes showing more than five-fold higher expression levels in the endometrium compared to other tissues. In conclusion, our analysis based on transcriptomics and antibody-based protein profiling reports here comprehensive lists of genes with elevated expression levels in the endometrium, providing important starting points for a better molecular understanding of human reproductive biology and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-46 of 46
Type of publication
journal article (45)
research review (1)
Type of content
peer-reviewed (45)
other academic/artistic (1)
Author/Editor
Hallström, Björn M. (43)
Uhlén, Mathias (25)
Pontén, Fredrik (19)
Fagerberg, Linn (16)
Edlund, Karolina (9)
Nielsen, Jens B, 196 ... (8)
show more...
Mardinoglu, Adil, 19 ... (7)
Kampf, Caroline (7)
Nielsen, Jens (7)
Lundberg, Emma (6)
Asplund, Anna (6)
Sivertsson, Åsa (5)
Lindskog, Cecilia (5)
Schwenk, Jochen M. (4)
Odeberg, Jacob (4)
Danielsson, Angelika (4)
Djureinovic, Dijana (4)
Sjöstedt, Evelina (4)
Oksvold, Per (3)
Nilsson, Peter (3)
Petranovic Nielsen, ... (3)
Zwahlen, Martin (3)
Tegel, Hanna (3)
Botling, Johan (3)
von Feilitzen, Kalle (2)
Huss, Mikael (2)
Edfors, Fredrik (2)
Mulder, Jan (2)
Ekman, Simon (2)
Jirström, Karin (2)
Koyi, Hirsh (2)
Brandén, Eva (2)
Chen, Yun, 1978 (2)
Broberg, Karin (2)
Micke, Patrick (2)
Danielsson, Frida (2)
Siewers, Verena, 197 ... (2)
Brunnström, Hans (2)
Rockberg, Johan (2)
Janke, Axel (2)
Wieland, Thomas (2)
Tolf, Anna (2)
Szigyarto, Cristina ... (2)
La Fleur, Linnea (2)
Huang, Mingtao, 1984 (2)
Feizi, Amir, 1980 (2)
Stadler, Charlotte (2)
Kuster, Bernhard (2)
Palmgren, Michael (2)
Rahnenfuehrer, Joerg (2)
show less...
University
Royal Institute of Technology (46)
Uppsala University (22)
Chalmers University of Technology (15)
Karolinska Institutet (14)
Lund University (4)
Stockholm University (3)
show more...
University of Gothenburg (1)
Örebro University (1)
show less...
Language
English (46)
Research subject (UKÄ/SCB)
Natural sciences (36)
Medical and Health Sciences (25)
Engineering and Technology (4)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view