SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammarstroem L) "

Sökning: WFRF:(Hammarstroem L)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bianchini, F, et al. (författare)
  • Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein
  • 2023
  • Ingår i: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 8:81, s. eade0958-
  • Tidskriftsartikel (refereegranskat)abstract
    • Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2′ site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.
  •  
2.
  • Abolhassani, H, et al. (författare)
  • Hallmarks of Cancers: Primary Antibody Deficiency Versus Other Inborn Errors of Immunity
  • 2021
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 12, s. 720025-
  • Tidskriftsartikel (refereegranskat)abstract
    • Inborn Errors of Immunity (IEI) comprise more than 450 inherited diseases, from which selected patients manifest a frequent and early incidence of malignancies, mainly lymphoma and leukemia. Primary antibody deficiency (PAD) is the most common form of IEI with the highest proportion of malignant cases. In this review, we aimed to compare the oncologic hallmarks and the molecular defects underlying PAD with other IEI entities to dissect the impact of avoiding immune destruction, genome instability, and mutation, enabling replicative immortality, tumor-promoting inflammation, resisting cell death, sustaining proliferative signaling, evading growth suppressors, deregulating cellular energetics, inducing angiogenesis, and activating invasion and metastasis in these groups of patients. Moreover, some of the most promising approaches that could be clinically tested in both PAD and IEI patients were discussed.
  •  
3.
  • Fliegauf, M, et al. (författare)
  • Detrimental NFKB1 missense variants affecting the Rel-homology domain of p105/p50
  • 2022
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 13, s. 965326-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the currently known heterozygous pathogenic NFKB1 (Nuclear factor kappa B subunit 1) variants comprise deleterious defects such as severe truncations, internal deletions, and frameshift variants. Collectively, these represent the most frequent monogenic cause of common variable immunodeficiency (CVID) identified so far. NFKB1 encodes the transcription factor precursor p105 which undergoes limited proteasomal processing of its C-terminal half to generate the mature NF-κB subunit p50. Whereas p105/p50 haploinsufficiency due to devastating genetic damages and protein loss is a well-known disease mechanism, the pathogenic significance of numerous NFKB1 missense variants still remains uncertain and/or unexplored, due to the unavailability of accurate test procedures to confirm causality. In this study we functionally characterized 47 distinct missense variants residing within the N-terminal domains, thus affecting both proteins, the p105 precursor and the processed p50. Following transient overexpression of EGFP-fused mutant p105 and p50 in HEK293T cells, we used fluorescence microscopy, Western blotting, electrophoretic mobility shift assays (EMSA), and reporter assays to analyze their effects on subcellular localization, protein stability and precursor processing, DNA binding, and on the RelA-dependent target promoter activation, respectively. We found nine missense variants to cause harmful damage with intensified protein decay, while two variants left protein stability unaffected but caused a loss of the DNA-binding activity. Seven of the analyzed single amino acid changes caused ambiguous protein defects and four variants were associated with only minor adverse effects. For 25 variants, test results were indistinguishable from those of the wildtype controls, hence, their pathogenic impact remained elusive. In summary, we show that pathogenic missense variants affecting the Rel-homology domain may cause protein-decaying defects, thus resembling the disease-mechanisms of p105/p50 haploinsufficiency or may cause DNA-binding deficiency. However, rare variants (with a population frequency of less than 0.01%) with minor abnormalities or with neutral tests should still be considered as potentially pathogenic, until suitable tests have approved them being benign.
  •  
4.
  •  
5.
  • Lim, CK, et al. (författare)
  • STXBP6 and B3GNT6 Genes are Associated With Selective IgA Deficiency
  • 2021
  • Ingår i: Frontiers in genetics. - : Frontiers Media SA. - 1664-8021. ; 12, s. 736235-
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunoglobulin A Deficiency (IgAD) is a polygenic primary immune deficiency, with a strong genetic association to the human leukocyte antigen (HLA) region. Previous genome-wide association studies (GWAS) have identified five non-HLA risk loci (IFIH1, PVT1, ATG13-AMBRA1, AHI1 and CLEC16A). In this study, we investigated the genetic interactions between different HLA susceptibility haplotypes and non-MHC genes in IgAD. To do this, we stratified IgAD subjects and healthy controls based on HLA haplotypes (N = 10,993), and then performed GWAS to identify novel genetic regions contributing to IgAD susceptibility. After replicating previously published HLA risk haplotypes, we compared individuals carrying at least one HLA risk allele (HLA-B*08:01-DRB1*03:01-DQB1*02:01 or HLA-DRB1*07:01-DQB1*02:02 or HLA-DRB1*01-DQB1*05:01) with individuals lacking an HLA risk allele. Subsequently, we stratified subjects based on the susceptibility alleles/haplotypes and performed gene-based association analysis using 572,856 SNPs and 24,125 genes. A significant genome-wide association in STXBP6 (rs4097492; p = 7.63 × 10−9) was observed in the cohort carrying at least one MHC risk allele. We also identified a significant gene-based association for B3GNT6 (PGene = 2.1 × 10–6) in patients not carrying known HLA susceptibility alleles. Our findings indicate that the etiology of IgAD differs depending on the genetic background of HLA susceptibility haplotypes.
  •  
6.
  •  
7.
  • Yuki, Y, et al. (författare)
  • Lactobacilli as a Vector for Delivery of Nanobodies against Norovirus Infection
  • 2023
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Passive administration of neutralizing antibodies (Abs) is an attractive strategy for the control of gastrointestinal infections. However, an unanswered practical concern is the need to assure the stability of sufficient amounts of orally administered neutralizing Abs against intestinal pathogens (e.g., norovirus) in the harsh environment of the gastrointestinal tract. To this end, we expressed a single-domain Ab (VHH, nanobody) against norovirus on the cell surface of Lactobacillus, a natural and beneficial commensal component of the gut microbiome. First, we used intestinal epithelial cells generated from human induced pluripotent stem cells to confirm that VHH 1E4 showed neutralizing activity against GII.17 norovirus. We then expressed VHH 1E4 as a cell-wall–anchored form in Lactobacillus paracasei BL23. Flow cytometry confirmed the expression of VHH 1E4 on the surface of lactobacilli, and L. paracasei that expressed VHH 1E4 inhibited the replication of GII.17 norovirus in vitro. We then orally administered VHH 1E4-expressing L. paracasei BL23 to germ-free BALB/c mice and confirmed the presence of lactobacilli with neutralizing activity in the intestine for at least 10 days after administration. Thus, cell-wall-anchored VHH-displaying lactobacilli are attractive oral nanobody deliver vectors for passive immunization against norovirus infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy