SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hanse Eric) "

Sökning: WFRF:(Hanse Eric)

  • Resultat 1-50 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Therése, 1976, et al. (författare)
  • AMPA silencing is a prerequisite for developmental long-term potentiation in the hippocampal CA1 region.
  • 2008
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598.
  • Tidskriftsartikel (refereegranskat)abstract
    • AMPA unsilencing is an often proposed expression mechanism both for developmental LTP, involved in circuitry refinement during brain development, and for mature LTP, involved in learning and memory. In the hippocampal CA3-CA1 connection naïve (non-stimulated) synapses are AMPA-signaling, and AMPA-silent synapses are created from naïve AMPA-signaling (AMPA-labile) synapses by test pulse synaptic activation (AMPA silencing). To investigate to what extent LTP at different developmental stages are explained by AMPA unsilencing, the amount of LTP obtained at these different developmental stages was related to the amount of AMPA silencing that preceded the induction of LTP. When examined in the second postnatal week Hebbian induction was found to produce no more stable potentiation than that causing a return to the naïve synaptic strength existing prior to the AMPA silencing. Moreover, in the absence of a preceding AMPA silencing Hebbian induction produced no stable potentiation above the naïve synaptic strength. Thus, this early, or developmental, LTP is nothing more than an unsilencing (de-depression), and stabilization, of the AMPA signaling that was lost by the prior AMPA silencing. This de-depression and stabilization of AMPA signaling was mimicked by the presence of the PKA-activator forskolin. As the relative degree of AMPA silencing decreased with development, LTP manifested itself more and more as a "genuine" potentiation (as opposed to a de-depression) not explained by unsilencing and stabilization of AMPA-labile synapses. This "genuine", or mature, LTP rose from close to nothing of total LTP prior to P13, to about 70 % of total LTP at P16, and to about 90 % of total LTP at P30. Developmental LTP, by stabilization of AMPA labile synapses, thus seems adapted to select synaptic connections to the growing synaptic network. Mature LTP, by instead strengthening existing stable connections between cells, may then create functionally tightly connected cell assemblies within this network.
  •  
2.
  • Abrahamsson, Therése, 1976, et al. (författare)
  • Reversible synaptic depression in developing rat CA3-CA1 synapses explained by a novel cycle of AMPA silencing-unsilencing
  • 2007
  • Ingår i: JOURNAL OF NEUROPHYSIOLOGY. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 98:5, s. 2604-2611
  • Tidskriftsartikel (refereegranskat)abstract
    • In the developing hippocampus, experiments using whole cell recordings have shown that a small number of synaptic activations can convert many glutamate synapses to AMPA silent synapses. This depression of AMPA signaling is induced by low-frequency (0.05–0.2 Hz) activation, does not require N-methyl-d-aspartate or metabotropic glutamate receptor activation for its induction, and does not readily reverse after stimulus interruption. Here we show, using field recordings and perforated patch-clamp recordings of transmission in developing CA3–CA1 synapses, that this synaptic depression also can be observed under more noninvasive recording conditions. Moreover, under these conditions, the synaptic depression spontaneously recovers within 20 min by the absence of synaptic activation alone, with a time constant of ∼7 min as determined by field excitatory postsynaptic potential recordings. Thus as for the expression of long-term potentiation (LTP), recovery from this depression is susceptible to whole cell dialysis (“wash-out”). In contrast to LTP-induced unsilencing, the AMPA signaling after stimulus interruption was again labile, resumed stimulation resulted in renewed depression. The present study has thus identified a novel cycle for AMPA signaling in which the nascent glutamate synapse cycles between an AMPA silent state, induced by a small number of synaptic activations, and a labile AMPA signaling, induced by prolonged inactivity.
  •  
3.
  • Abrahamsson, Therése, 1976, et al. (författare)
  • Synaptic fatigue at the naive perforant path-dentate granule cell synapse in the rat.
  • 2005
  • Ingår i: The Journal of physiology. - : Wiley. - 0022-3751. ; 569:Pt 3, s. 737-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic activation at low frequency is often used to probe synaptic function and synaptic plasticity, but little is known about how such low-frequency activation itself affects synaptic transmission. In the present study, we have examined how the perforant path-dentate granule cell (PP-GC) synapse adapts to low-frequency activation from a previously non-activated (naive) state. Stimulation at 0.2 Hz in acute slices from developing rats (7-12 days old) caused a gradual depression of the AMPA EPSC (at -80 mV) to about half within 50 stimuli. This synaptic fatigue was unaffected by the NMDA and metabotropic glutamate (mGlu) receptor antagonists d-AP5 and LY-341495. A smaller component of this synaptic fatigue was readily reversible when switching to very low-frequency stimulation (0.033-0.017 Hz) and is attributed to a reversible decrease in release probability, which is probably due to depletion of readily releasable vesicles. Thus, it was expressed to the same extent by AMPA and NMDA EPSCs, and was associated with a decrease in quantal content (measured as 1/CV(2)) with no change in the paired-pulse ratio. The larger component of the synaptic fatigue was not readily reversible, was selective for AMPA EPSCs and was associated with a decrease in 1/CV(2), thus probably representing silencing of AMPA signalling in a subset of synapses. In adult rats (> 30 days old), the AMPA silencing had disappeared while the low-frequency depression remained unaltered. The present study has thus identified two forms of synaptic plasticity that contribute to fatigue of synaptic transmission at low frequencies at the developing PP-GC synapse; AMPA silencing and a low-frequency depression of release probability.
  •  
4.
  •  
5.
  • Andersson, My, 1980, et al. (författare)
  • Astrocyte-mediated short-term synaptic depression in the rat hippocampal CA1 area: two modes of decreasing release probability.
  • 2011
  • Ingår i: BMC neuroscience. - : Springer Science and Business Media LLC. - 1471-2202. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Synaptic burst activation feeds back as a short-term depression of release probability at hippocampal CA3-CA1 synapses. This short-term synaptic plasticity requires functional astrocytes and it affects both the recently active (< 1 s) synapses (post-burst depression) as well as inactive neighboring synapses (transient heterosynaptic depression). The aim of this study was to investigate and compare the components contributing to the depression of release probability in these two different scenarios. RESULTS: When tested using paired-pulses, following a period of inactivity, the transient heterosynaptic depression was expressed as a reduction in the response to only the first pulse, whereas the response to the second pulse was unaffected. This selective depression of only the first response in a high-frequency burst was shared by the homosynaptic post-burst depression, but it was partially counteracted by augmentation at these recently active synapses. In addition, the expression of the homosynaptic post-burst depression included an astrocyte-mediated reduction of the pool of release-ready primed vesicles. CONCLUSIONS: Our results suggest that activated astrocytes depress the release probability via two different mechanisms; by depression of vesicular release probability only at inactive synapses and by imposing a delay in the recovery of the primed pool of vesicles following depletion. These mechanisms restrict the expression of the astrocyte-mediated depression to temporal windows that are typical for synaptic burst activity.
  •  
6.
  • Andersson, My, 1980, et al. (författare)
  • Astrocytes impose postburst depression of release probability at hippocampal glutamate synapses.
  • 2010
  • Ingår i: The Journal of neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 30:16, s. 5776-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Many neurons typically fire action potentials in brief, high-frequency bursts with specific consequences for their synaptic output. Here we have examined short-term plasticity engaged during burst activation using electrophysiological recordings in acute rat hippocampal slices. We show that CA3-CA1 glutamate synapses exhibit a prominent depression of presynaptic release probability for approximately 1 s after such a burst. This postburst depression exhibits a distinct cooperativity threshold, is abolished by inhibiting astrocyte metabolism and astrocyte calcium signaling, and is not operational in the developing hippocampus. Our results suggest that astrocytes are actively involved in short-term synaptic depression, shaping synaptic activity during behaviorally relevant neural activity.
  •  
7.
  • Andersson, My, 1980, et al. (författare)
  • Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region.
  • 2007
  • Ingår i: The Journal of physiology. - : Wiley. - 0022-3751. ; 585:Pt 3, s. 843-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Active synapses can reduce the probability of transmitter release at neighbouring synapses. Depending on whether such heterosynaptic depression is mediated by intersynaptic diffusion of transmitter or by release of gliotransmitters, astrocytes should either hinder or promote the heterosynaptic depression. In the present study we have examined the developmental profile and astrocytic involvement in a transient heterosynaptic depression (tHeSD) in the CA1 region of the rat hippocampal slice preparation. A short stimulus burst (3 impulses at 50 Hz) to one group of synapses elicited a depression of the field EPSP evoked in another group of synapses that amounted to about 25% 0.5 s after the conditioning burst. This tHeSD was associated with an increase in the paired-pulse ratio of about 30%. The tHeSD was not present in slices from rats younger than 10 postnatal days and developed towards the adult magnitude between postnatal days 10 and 20. The tHeSD was totally prevented by the glia-specific toxin fluoroacetate (FAC), by carbenoxolone, a general blocker of connexin-based channels, and by endothelin, an endogenous peptide that has been shown to block astrocytic connexin-based channels. Antagonists to GABA(B) receptors and group II/III metabotropic glutamate receptors (mGluRs) abolished the tHeSD whereas antagonists to NMDA- and adenosine A1 receptors, and to group I mGluRs, did not affect the tHeSD. These results suggest that the tHeSD relies on GABA(B) receptors, group II/III mGluRs and on gliotransmitter release from functionally mature astrocytes.
  •  
8.
  • Bergström, Petra, et al. (författare)
  • Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) and its cleavage product amyloid beta (A beta) have been thoroughly studied in Alzheimer's disease. However, APP also appears to be important for neuronal development. Differentiation of induced pluripotent stem cells (iPSCs) towards cortical neurons enables in vitro mechanistic studies on human neuronal development. Here, we investigated expression and proteolytic processing of APP during differentiation of human iPSCs towards cortical neurons over a 100-day period. APP expression remained stable during neuronal differentiation, whereas APP processing changed. alpha-Cleaved soluble APP (sAPP alpha) was secreted early during differentiation, from neuronal progenitors, while beta-cleaved soluble APP (sAPP beta) was first secreted after deep-layer neurons had formed. Short A beta peptides, including A beta 1-15/16, peaked during the progenitor stage, while processing shifted towards longer peptides, such as A beta 1-40/42, when post-mitotic neurons appeared. This indicates that APP processing is regulated throughout differentiation of cortical neurons and that amyloidogenic APP processing, as reflected by A beta 1-40/42, is associated with mature neuronal phenotypes.
  •  
9.
  • Björefeldt, Andreas, 1982, et al. (författare)
  • Human cerebrospinal fluid increases the excitability of pyramidal neurons in the in vitro brain slice.
  • 2015
  • Ingår i: The Journal of physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 593:1, s. 231-43
  • Tidskriftsartikel (refereegranskat)abstract
    • The cerebrospinal fluid contains numerous neuromodulators at ambient levels but whether, and how, they affect the activity of central neurons is unknown. This study provides experimental evidence that human cerebrospinal fluid (hCSF) increases the excitability of hippocampal and neocortical pyramidal neurons. Hippocampal CA1 pyramidal neurons in hCSF displayed lowered firing thresholds, depolarized resting membrane potentials and reduced input resistance, mimicking properties of pyramidal neurons recorded in vivo. The excitability-increasing effect of hCSF on CA1 pyramidal neurons was entirely occluded by intracellular application of GTPγS, suggesting that neuromodulatory effects were mediated by G-protein coupled receptors. These results indicate that the CSF promotes spontaneous excitatory neuronal activity, and may help to explain observed differences in the activity of pyramidal neurons recorded in vivo and in vitro.
  •  
10.
  • Björefeldt, Andreas, 1982, et al. (författare)
  • Human cerebrospinal fluid promotes spontaneous gamma oscillations in the hippocampus in vitro
  • 2020
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 30:2, s. 101-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma oscillations (30-80 Hz) are fast network activity patterns frequently linked to cognition. They are commonly studied in hippocampal brain slices in vitro, where they can be evoked via pharmacological activation of various receptor families. One limitation of this approach is that neuronal activity is studied in a highly artificial extracellular fluid environment, as provided by artificial cerebrospinal fluid (aCSF). Here, we examine the influence of human cerebrospinal fluid (hCSF) on kainate-evoked and spontaneous gamma oscillations in mouse hippocampus. We show that hCSF, as compared to aCSF of matched electrolyte and glucose composition, increases the power of kainate-evoked gamma oscillations and induces spontaneous gamma activity in areas CA3 and CA1 that is reversed by washout. Bath application of atropine entirely abolished hCSF-induced gamma oscillations, indicating critical contribution from muscarinic acetylcholine receptor-mediated signaling. In separate whole-cell patch clamp recordings from rat hippocampus, hCSF increased theta resonance frequency and strength in pyramidal cells along with enhancement of h-current (I-h) amplitude. We found no evidence of intrinsic gamma frequency resonance at baseline (aCSF) among fast-spiking interneurons, and this was not altered by hCSF. However, hCSF increased the excitability of fast-spiking interneurons, which likely contributed to gamma rhythmogenesis. Our findings show that hCSF promotes network gamma oscillations in the hippocampus in vitro and suggest that neuromodulators distributed in CSF could have significant influence on neuronal network activity in vivo.
  •  
11.
  • Björefeldt, Andreas, 1982, et al. (författare)
  • Neuromodulation of fast-spiking and non-fast-spiking hippocampal CA1 interneurons by human cerebrospinal fluid.
  • 2016
  • Ingår i: The Journal of physiology. - 1469-7793. ; 594:4, s. 937-52
  • Tidskriftsartikel (refereegranskat)abstract
    • GABAergic interneurons intricately regulate the activity of hippocampal and neocortical networks. Their function in vivo is likely to be tuned by neuromodulatory substances in brain extracellular fluid. However, in vitro investigations of GABAergic interneuron function do not account for such effects, as neurons are kept in artificial extracellular fluid. To examine the neuromodulatory influence of brain extracellular fluid on GABAergic activity, we recorded from fast-spiking and non-fast-spiking CA1 interneurons, as well as from pyramidal cells, in the presence of human cerebrospinal fluid (hCSF), using a matched artificial cerebrospinal (aCSF) fluid as control. We found that hCSF increased the frequency of spontaneous firing more than twofold in the two groups of interneurons, and more than fourfold in CA1 pyramidal cells. hCSF did not affect the resting membrane potential of CA1 interneurons but caused depolarization in pyramidal cells. The increased excitability of interneurons and pyramidal cells was accompanied by reductions in afterhyperpolarization amplitudes and a left-shift in the frequency-current relationships. Our results suggest that ambient concentrations of neuromodulators in the brain extracellular fluid powerfully influence the excitability of neuronal networks. This article is protected by copyright. All rights reserved.
  •  
12.
  • Björefeldt, Andreas, 1982, et al. (författare)
  • Neuromodulation via the Cerebrospinal Fluid: Insights from Recent in Vitro Studies.
  • 2018
  • Ingår i: Frontiers in neural circuits. - : Frontiers Media SA. - 1662-5110. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The cerebrospinal fluid (CSF) occupies the brain's ventricles and subarachnoid space and, together with the interstitial fluid (ISF), forms a continuous fluidic network that bathes all cells of the central nervous system (CNS). As such, the CSF is well positioned to actively distribute neuromodulators to neural circuitsin vivovia volume transmission. Recentin vitroexperimental work in brain slices and neuronal cultures has shown that human CSF indeed contains neuromodulators that strongly influence neuronal activity. Here we briefly summarize these new findings and discuss their potential relevance to neural circuits in health and disease.
  •  
13.
  • Blomstrand, Fredrik, 1969, et al. (författare)
  • Endothelins regulate astrocyte gap junctions in rat hippocampal slices.
  • 2004
  • Ingår i: The European journal of neuroscience. - 0953-816X. ; 19:4, s. 1005-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Gap junctional communication (GJC) is a typical feature of astrocytes proposed to contribute to the role played by these glial cells in brain physiology and pathology. In acutely isolated hippocampal slices from rat (P11-P19), intercellular diffusion of biocytin through gap junction channels was shown to occur between hundreds of cells immuno-positive for astrocytic markers studied in the CA1/CA2 region. Single-cell RT-PCR demonstrated astrocytic mRNA expression of several connexin (Cx) subtypes, the molecular constituent of gap junction channels, whereas immunoblotting confirmed that Cx43 and Cx30 are the main gap junction proteins in hippocampal astrocytes. In the brain, astrocytes represent a major target for endothelins (Ets), a vasoactive family of peptides. Our results demonstrate that Ets decrease the expression of phosphorylated Cx43 forms and are potent inhibitors of GJC. The Et-induced effects were investigated using specific Et receptor agonists and antagonists, including Bosentan (Tracleer trade mark ), an EtA/B receptor antagonist, and using hippocampal slices and cultures from EtB-receptor-deficient rats. Interestingly, the pharmacological profile of Ets effects did not follow the classical profile established in cardiovascular systems. The present study therefore identifies Ets as potent endogenous inhibitory regulators of astrocyte networks. As such, the action of these peptides on astrocyte GJC might be involved in the contribution of astrocytes to neuroprotective processes and have a therapeutic potential in neuropathological situations.
  •  
14.
  • Brederlau, Anke, 1968, et al. (författare)
  • Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation.
  • 2006
  • Ingår i: Stem cells (Dayton, Ohio). - : Oxford University Press (OUP). - 1066-5099 .- 1549-4918. ; 24:6, s. 1433-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESCs) have been proposed as a source of dopamine (DA) neurons for transplantation in Parkinson's disease (PD). We have investigated the effect of in vitro predifferentiation on in vivo survival and differentiation of hESCs implanted into the 6-OHDA (6-hydroxydopamine)-lesion rat model of PD. The hESCs were cocultured with PA6 cells for 16, 20, or 23 days, leading to the in vitro differentiation into DA neurons. Grafted hESC-derived cells survived well and expressed neuronal markers. However, very few exhibited a DA neuron phenotype. Reversal of lesion-induced motor deficits was not observed. Rats grafted with hESCs predifferentiated in vitro for 16 days developed severe teratomas, whereas most rats grafted with hESCs predifferentiated for 20 and 23 days remained healthy until the end of the experiment. This indicates that prolonged in vitro differentiation of hESCs is essential for preventing formation of teratomas.
  •  
15.
  • Daborg, Jonny, et al. (författare)
  • Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease.
  • 2012
  • Ingår i: Journal of neural transmission (Vienna, Austria : 1996). - : Springer Science and Business Media LLC. - 1435-1463 .- 0300-9564. ; 119:7, s. 789-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is strongly associated with loss of synapses. The complement system has been shown to be involved in synaptic elimination. Several studies point to an association between AD and the complement system. The purpose of this study was to examine the association of cerebrospinal fluid (CSF) levels of complement components 3 and 4 (C3 and C4, respectively), and complement receptor 1 (CR1) with AD in 43 patients with AD plus dementia, 42 patients with mild cognitive impairment (MCI) who progressed to AD during follow-up (MCI-AD), 42 patients with stable MCI and 44 controls. Complement levels were also applied in a multivariate model to determine if they provided any added value to the core AD biomarkers Aβ42, T-tau and P-tau. We found elevated CSF levels of C3 and C4 in AD compared with MCI without progression to AD, and elevated CSF levels of CR1 in MCI-AD and AD when these groups were merged. These results provide support for aberrant complement regulation as a part in the AD process, but the changes are not diagnostically useful.
  •  
16.
  • Daborg, Jonny, et al. (författare)
  • Complement Gene Single Nucleotide Polymorphisms and Biomarker Endophenotypes of Alzheimer's Disease
  • 2013
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877. ; 35:1, s. 51-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The complement system has been implicated in both physiological synapse elimination and Alzheimer's disease (AD). Here, we investigated associations between four single nucleotide polymorphisms (SNPs) in complement genes and cerebrospinal fluid (CSF) biomarkers for AD in 452 neurochemically or neuropathologically verified AD cases and 678 cognitively normal controls. None of the SNPs associated with risk of AD but there were potential associations of rs9332739 in the C2 gene and rs4151667 in the complement factor B gene with CSF tau levels (p = 0.023) and Mini-Mental State Examination scores (p = 0.012), both of which may be considered markers of disease intensity/severity.
  •  
17.
  • Dahlin, Emelie, et al. (författare)
  • Effects of physical exercise and stress on hippocampal CA1 and dentate gyrus synaptic transmission and long-term potentiation in adolescent and adult Wistar rats
  • 2019
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522. ; 408, s. 22-30
  • Tidskriftsartikel (refereegranskat)abstract
    • It is commonly recognized that physical exercise positively affects several CNS regions and improves cognitive abilities. For example, exercise is associated with an increase in neurogenesis and facilitation of long-term potentiation in the hippocampus. Conversely, animal models for depression are associated with a decrease in neurogenesis and a reduction of long-term potentiation in the hippocampus. Although exercise could be a viable option in the treatment of some forms of depression, the mechanisms responsible for such improvements have not been elucidated. In this study, we examine hippocampal function using electrophysiological field recordings in CA1 and dentate gyrus to study baseline synaptic transmission and long-term potentiation in adolescent and adult rats prenatally exposed to the glucocorticoid dexamethasone. One group of animals was allowed to run voluntarily for 10 or 21 days using an exercise wheel before the experiments, and the control group was prevented from running (i.e. the exercise wheel was locked). In adult saline-exposed animals, exercise was associated with increased long-term potentiation in the dentate gyrus. Unexpectedly, in dexamethasone-exposed animals, dentate gyrus long-term potentiation was facilitated, whereas long-term potentiation in CA1 was unaffected by prenatal dexamethasone or by 10 or 21 days of voluntary running. Irrespective of age, prenatal dexamethasone and running had limited effects on synaptic transmission and presynaptic release in CA1 and dentate gyrus. In summary, running facilitates dentate gyrus long-term potentiation in adult animals that resembles the effects of prenatal dexamethasone. © 2019 Elsevier Ltd
  •  
18.
  • Dupuis, Julien P, et al. (författare)
  • Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses.
  • 2014
  • Ingår i: The EMBO journal. - : Wiley. - 1460-2075 .- 0261-4189. ; 33:8, s. 842-861
  • Tidskriftsartikel (refereegranskat)abstract
    • NMDA-type glutamate receptors (NMDAR) are central actors in the plasticity of excitatory synapses. During adaptive processes, the number and composition of synaptic NMDAR can be rapidly modified, as in neonatal hippocampal synapses where a switch from predominant GluN2B- to GluN2A-containing receptors is observed after the induction of long-term potentiation (LTP). However, the cellular pathways by which surface NMDAR subtypes are dynamically regulated during activity-dependent synaptic adaptations remain poorly understood. Using a combination of high-resolution single nanoparticle imaging and electrophysiology, we show here that GluN2B-NMDAR are dynamically redistributed away from glutamate synapses through increased lateral diffusion during LTP in immature neurons. Strikingly, preventing this activity-dependent GluN2B-NMDAR surface redistribution through cross-linking, either with commercial or with autoimmune anti-NMDA antibodies from patient with neuropsychiatric symptoms, affects the dynamics and spine accumulation of CaMKII and impairs LTP. Interestingly, the same impairments are observed when expressing a mutant of GluN2B-NMDAR unable to bind CaMKII. We thus uncover a non-canonical mechanism by which GluN2B-NMDAR surface dynamics plays a critical role in the plasticity of maturing synapses through a direct interplay with CaMKII.
  •  
19.
  • Engström-Ruud, Linda, et al. (författare)
  • Activation of GFRAL+ neurons induces hypothermia and glucoregulatory responses associated with nausea and torpor.
  • 2024
  • Ingår i: Cell reports. - 2211-1247. ; 43:4
  • Tidskriftsartikel (refereegranskat)abstract
    • GFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL+ neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL+ neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat. Metabolomic analysis of blood and transcriptomics of muscle and fat indicate alterations in ketogenesis, insulin signaling, adipose tissue differentiation and mitogenesis, and energy fluxes. Our findings indicate that acute GFRAL+ neuron activation induces endocrine and gluco- and thermoregulatory responses associated with nausea and torpor. While chronic activation of GFRAL signaling promotes weight loss in obesity, these results show that acute activation of GFRAL+ neurons causes hypothermia and hyperglycemia.
  •  
20.
  • Espana, A., et al. (författare)
  • Alteration of NMDA receptor trafficking as a cellular hallmark of psychosis
  • 2021
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A dysfunction of the glutamatergic transmission, especially of the NMDA receptor (NMDAR), constitutes one of the main biological substrate of psychotic disorders, such as schizophrenia. The NMDAR signaling hypofunction, through genetic and/or environmental insults, would cause a neurodevelopmental myriad of molecular, cellular, and network alterations that persist throughout life. Yet, the mechanisms underpinning NMDAR dysfunctions remain elusive. Here, we compared the membrane trafficking of NMDAR in three gold-standard models of schizophrenia, i.e., patient's cerebrospinal fluids, genetic manipulations of susceptibility genes, and prenatal developmental alterations. Using a combination of single nanoparticle tracking, electrophysiological, biochemical, and behavioral approaches in rodents, we identified that the NMDAR trafficking in hippocampal neurons was consistently altered in all these different models. Artificial manipulations of the NMDAR surface dynamics with competing ligands or antibody-induced receptor cross-link in the developing rat brain were sufficient to regulate the adult acoustic startle reflex and compensate for an early pathological challenge. Collectively, we show that the NMDAR trafficking is markedly altered in all clinically relevant models of psychosis, opening new avenues of therapeutical strategies.
  •  
21.
  •  
22.
  • Faijerson, Jonas, 1977, et al. (författare)
  • Adult neural stem/progenitor cells reduce NMDA-induced excitotoxicity via the novel neuroprotective peptide pentinin.
  • 2009
  • Ingår i: Journal of neurochemistry. - 1471-4159. ; 109:3, s. 858-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the potential of adult neural stem cells to repair damage via cell replacement has been widely reported, the ability of endogenous stem cells to positively modulate damage is less well studied. We investigated whether medium conditioned by adult hippocampal stem/progenitor cells altered the extent of excitotoxic cell death in hippocampal slice cultures. Conditioned medium significantly reduced cell death following 24 h of exposure to 10 microM NMDA. Neuroprotection was greater in the dentate gyrus, a region neighboring the subgranular zone where stem/progenitor cells reside compared with pyramidal cells of the cornis ammonis. Using mass spectrometric analysis of the conditioned medium, we identified a pentameric peptide fragment that corresponded to residues 26-30 of the insulin B chain which we termed 'pentinin'. The peptide is a putative breakdown product of insulin, a constituent of the culture medium, and may be produced by insulin-degrading enzyme, an enzyme expressed by the stem/progenitor cells. In the presence of 100 pM of synthetic pentinin, the number of mature and immature neurons killed by NMDA-induced toxicity was significantly reduced in the dentate gyrus. These data suggest that progenitors in the subgranular zone may convert exogenous insulin into a peptide capable of protecting neighboring neurons from excitotoxic injury.
  •  
23.
  • Forsberg, My, et al. (författare)
  • Ion concentrations in cerebrospinal fluid in wakefulness, sleep and sleep deprivation in healthy humans
  • 2022
  • Ingår i: Journal of Sleep Research. - : Wiley. - 0962-1105 .- 1365-2869. ; 31:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Sleep is controlled by a circadian rhythmicity, via a reduction of arousal-promoting neuromodulatory activity, and by accumulation of somnogenic factors in the interstitial fluid of the brain. Recent experiments in mice suggest that a reduced neuronal excitability caused by a reduced concentration of potassium in the brain, concomitant with an increased concentration of calcium and magnesium, constitutes an important mediator of sleep. In the present study, we examined whether such changes in ion concentrations could be detected in the cerebrospinal fluid of healthy humans. Each subject underwent cerebrospinal fluid collection at three occasions in a randomized order: at 15:00 hours–17:00 hours during waking, at 06:00 hours–07:00 hours immediately following 1 night of sleep, and at 06:00 hours–07:00 hours following 1 night of sleep deprivation. When compared with wakefulness, both sleep and sleep deprivation produced the same effect of a small (0.1mm, about 3%), but robust and highly significant, reduction in potassium concentration. Calcium and magnesium concentrations were unchanged. Our results support a circadian modulation of neuronal excitability in the brain mediated via changes of the interstitial potassium concentration.
  •  
24.
  • Forsberg, My, et al. (författare)
  • Ionized calcium in human cerebrospinal fluid and its influence on intrinsic and synaptic excitability of hippocampal pyramidal neurons in the rat.
  • 2019
  • Ingår i: Journal of neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 149:4, s. 452-470
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well-known that the extracellular concentration of calcium affects neuronal excitability and synaptic transmission. Less is known about the physiological concentration of extracellular calcium in the brain. In electrophysiological brain slice experiments, the artificial cerebrospinal fluid traditionally contains relatively high concentrations of calcium (2-4 mM) to support synaptic transmission and suppress neuronal excitability. Using an ion-selective electrode, we determined the fraction of ionized calcium in healthy human cerebrospinal fluid to 1.0mM of a total concentration of 1.2 mM (86%). Using patch-clamp and extracellular recordings in the CA1 region in acute slices of rat hippocampus, we then compared the effects of this physiological concentration of calcium with the commonly used 2 mM on neuronal excitability, synaptic transmission, and long-term potentiation (LTP) to examine the magnitude of changes in this range of extracellular calcium. Increasing the total extracellular calcium concentration from 1.2 to 2 mM decreased spontaneous action potential firing, induced a depolarization of the threshold, and increased the rate of both de- and repolarization of the action potential. Evoked synaptic transmission was approximately doubled, with a balanced effect between inhibition and excitation. In 1.2mM calcium high-frequency stimulation did not result in any LTP, whereas a prominent LTP was observed at 2 or 4 mM calcium. Surprisingly, this inability to induce LTP persisted during blockade of GABAergic inhibition. In conclusion, an increase from the physiological 1.2 mM to 2 mM calcium in the artificial cerebrospinal fluid has striking effects on neuronal excitability, synaptic transmission, and the induction of LTP.
  •  
25.
  • Granseth, Björn, 1973- (författare)
  • The corticogeniculate synapse : a neuronal amplifier?
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Consciousness is a nervous process that handles only a limited amount of information. Therefore the nervous system needs to select the most relevant input for aware processing. For the visual system, it has been suggested that recurrent excitation from the cortex to neurones in the lateral geniculate nucleus provides a "spotlight of attention", that selectively enhances the relay of information to the cortex. Such feedback excitation could be supplied by corticogeniculate neurones in layer 6 of the primary visual cortex. The corticogeniculate synaptic strength increases with neuronal firing frequency. From this property it can be hypothesised that the feedback excitation would function as a variable neuronal amplifier for boosting the information transfer in the attentive state. The general aim of this thesis was to study the synaptic mechanisms that make the corticogeniculate synapse frequency sensitive and evaluate this property in relation to the proposed neuronal amplifier function.Experiments were performed with whole-cell patch-clamp recordings from principal cells in a slice preparation of the rat dorsal lateral geniculate nucleus. Ex citatory postsynaptic currents (EPSCs) evoked by stimulation of corticogeniculate axons consistently displayed paired pulse facilitation. The ratio EPSC2 I EPSC1 was 3.7 ± 1.6 (mean ± standard deviation) for two pulses separated 40 ms. The paired pulse facilitation comprised a fast and slow component, evident from its double exponential decay. EPSCs evoked in the same cells by stimulating axons from the retina displayed paired pulse depression. The two types of EPSCs differed in their response to alterations in the extracellular calcium ion concentration ([Ca2+]o). The paired pulse depression at retinogeniculate synapses was attenuated by decreasing [Ca2+]o, apparently from lowering the level of transmitter release. At the corticogeniculate synapse, paired pulse facilitation was optimal at physiological [Ca2+]o. The facilitation was presynaptic in origin since the facilitated EPSC2 quantal size (q = - 5.2 ± 0.8 pA) was essentially the same as for EPSC1 (q = - 4.9 ± 0.9 pA). Each corticogeniculate axon terminated with 1 - 2 functional synapses (nsyn) per principal cell and the basal transmitter release probability was low (psyn = 0.09 ± 0.04) but increased with facilitation (psyn = 0.25 ± 0.10).When short trains of pulses were used for stimulation of corticogeniculate axons, the EPSCs rapidly increased in amplitude with the first 2 - 3 stimuli followed by a more gradual growth. A double exponential function, likely to represent the fast and slow components of facilitation could describe the EPSC build-up in amplitude. The time constant of fast facilitation was dependent on [Ca2+]o , presumably representing Ca2+ binding to a saturable intraterminal Ca2+ buffer. When pulse trains were repeated at 1 - 10 s intervals, EPSC1 in each train was progressively enhanced by augmentation, leaving late EPSCs unaffected. When [Ca2+]o was altered, augmented EPSCs changed in proportion to the basal EPSC amplitude, i.e. EPSC1:n / EPSC1,1 remained the same. The results indicate that augmentation is determined by a Ca2+ residue in the presynaptic terminal after repetitive spike firing, competing with the mechanism of the fast component of facilitation.The two components of facilitation and augmentation at the corticogeniculate synapse define the function of the suggested neuronal amplifier. The low basal synaptic strength ascertains that single random spikes will be virtually ineffective at the target cell, which protects the ex citatory feedback system from self-generated cyclic activity. Since the different forms of synaptic enhancement are presynaptic, the neuronal amplifier will be strictly stimulus specific in increasing synaptic strength. Furthermore, the different components seem to interact to increase EPSC amplitudes on a linear scale to firing frequency, that will increase the dynamic range of neuronal firing without distorting the basic characteristics of thalamic relay. Fast facilitation would account for most of the gain of the neuronal amplifier, while augmentation primarily reduces the time required to reach an effective level of synaptic strength. Thus it might serve to preserve the gain of the neuronal amplifier during attentive visual exploration, when the gaze may return repeatedly to the same fixation point.
  •  
26.
  • Groc, L., et al. (författare)
  • AMPA signalling in nascent glutamatergic synapses: there and not there!
  • 2006
  • Ingår i: Trends in neurosciences. - : Elsevier BV. - 0166-2236. ; 29:3, s. 132-9
  • Forskningsöversikt (refereegranskat)abstract
    • Nascent glutamatergic synapses are thought to be equipped with only NMDA receptors and to mature in a stepwise fashion when AMPA receptors are acquired later, through specific patterns of activity. We review recent data suggesting that AMPA receptors are in fact present in the nascent synapse but in a labile state. The nascent synapse can easily switch between AMPA-signalling and AMPA-silent states in a manner not requiring activation of NMDA receptors or metabotropic glutamate receptors. NMDA receptor activation by correlated presynaptic and postsynaptic activity can switch the nascent synapse to a mature, more stable state, in which AMPA receptor signalling is modified only through conventional plasticity processes. Thus, the AMPA receptor silence of nascent glutamatergic synapses depends on the synaptic activation history rather than on the nascent state itself.
  •  
27.
  • Hanse, Eric, 1962, et al. (författare)
  • AMPA-silent synapses in brain development and pathology.
  • 2013
  • Ingår i: Nature reviews. Neuroscience. - : Springer Science and Business Media LLC. - 1471-0048 .- 1471-003X. ; 14:12, s. 839-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Synapses are constantly generated at a high rate in the developing, prepubescent brain. Newly generated glutamatergic synapses lack functional AMPA receptor-mediated transmission. Most of these 'AMPA-silent' synapses are eliminated during the developmental period, but some are specifically selected for AMPA unsilencing by correlated pre-and postsynaptic activity as the first step in a process that leads to stabilization of the synapse. Premature, or delayed, unsilencing of AMPA-silent synapses has been implicated in neurodevelopmental disorders, and abnormal generation of AMPA-silent synapses is associated with brain trauma, addiction and neurodegenerative disorders, further highlighting the importance of AMPA-silent synapses in brain pathology.
  •  
28.
  •  
29.
  • Hanse, Eric, 1962, et al. (författare)
  • Glutamate synapse in developing brain: an integrative perspective beyond the silent state.
  • 2009
  • Ingår i: Trends in neurosciences. - : Elsevier BV. - 1878-108X .- 0166-2236. ; 32:10, s. 532-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular events underlying the establishment of glutamate transmission have been the focus of attention because appropriate wiring of developing neuronal networks is essential for adult brain functions. Although establishment of a synapse is a dynamic process requiring axonal and dendritic refinements, the functional interplay between pre- and postsynaptic signaling is often ignored. Here, we discuss recent data on pre- and postsynaptic plasticity of the glutamate synapse in the developing brain. The key aspect of the proposed model is that developing synapses are functionally labile in response to activity and this lability is counteracted by Hebbian activity. Both presynaptic and postsynaptic (loss of AMPA receptor signaling) mechanisms contribute to lability. Therefore, synapses in the developing brain maintain their capacity for functional AMPA signaling either by being presynaptically silent or by having participated in Hebbian activity; any synaptic activity outside this context leads instead to AMPA silencing and possible synaptic elimination.
  •  
30.
  • Hanse, Eric, 1962, et al. (författare)
  • [The medical education in Gothenburg is being reformed. Professional development, research and internationalization]
  • 2011
  • Ingår i: Läkartidningen. - 0023-7205. ; 108:12, s. 669-73
  • Tidskriftsartikel (refereegranskat)abstract
    • The medical education at the Sahlgrenska Academy, University of Gothenburg, is being reformed by an emphasis on professional development, international contacts and research. Students’ professional development consists of five core areas: Communication and self-reflection, Leadership and teamwork, Ethical attitude, Human rights and gender issues, and a Scientific and critical attitude. A learning progression of students’ professional competence is organised by five process leaders, coordinating core learning objectives and examinations within the existing curriculum. By promoting international exchange, more than half of the students in undergraduate medical education have had international contacts. The Sahlgrenska Academy aims to promote medical students’ interest for research and to increase the percentage among medical doctors that have a PhD degree. A program for combining medical education with research and teaching is being launched along with a MD/PhD program for medical basic science and a special PhD/MD program.
  •  
31.
  • Innala, Marcus, et al. (författare)
  • 3D Culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds.
  • 2014
  • Ingår i: Artificial cells, nanomedicine, and biotechnology (Print). - : Informa UK Limited. - 2169-141X .- 2169-1401. ; 42:5, s. 302-308
  • Tidskriftsartikel (refereegranskat)abstract
    • A new in vitro model, mimicking the complexity of nerve tissue, was developed based on a bacterial nanocellulose (BNC) scaffold that supports 3D culturing of neuronal cells. BNC is extracellularly excreted by Gluconacetobacter xylinus (G. xylinus) in the shape of long non-aggregated nanofibrils. The cellulose network created by G. xylinus has good mechanical properties, 99% water content, and the ability to be shaped into 3D structures by culturing in different molds. Surface modification with trimethyl ammonium beta-hydroxypropyl (TMAHP) to induce a positive surface charge, followed by collagen I coating, has been used to improve cell adhesion, growth, and differentiation on the scaffold. In the present study, we used SH-SY5Y neuroblastoma cells as a neuronal model. These cells attached and proliferated well on the BNC scaffold, as demonstrated by scanning electron microscopy (SEM) and the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay. Following neuronal differentiation, we demonstrated functional action potentials (APs) by electrophysiological recordings, indicating the presence of mature neurons on the scaffolds. In conclusion, we have demonstrated for the first time that neurons can attach, proliferate, and differentiate on BNC. This 3D model based on BNC scaffolds could possibly be used for developing in vitro disease models, when combined with human induced pluripotent stem (iPS) cells (derived from diseased patients) for detailed investigations of neurodegenerative disease mechanisms and in the search for new therapeutics.
  •  
32.
  • Izsak, Julia, et al. (författare)
  • Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function
  • 2021
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium salts are used as mood-balancing medication prescribed to patients suffering from neuropsychiatric disorders, such as bipolar disorder and major depressive disorder. Lithium salts cross the blood-brain barrier and reach the brain parenchyma within few hours after oral application, however, how lithium influences directly human neuronal function is unknown. We applied patch–clamp and microelectrode array technology on human induced pluripotent stem cell (iPSC)-derived cortical neurons acutely exposed to therapeutic (<1 mM) and overdose concentrations (>1 mM) of lithium chloride (LiCl) to assess how therapeutically effective and overdose concentrations of LiCl directly influence human neuronal electrophysiological function at the synapse, single-cell, and neuronal network level. We describe that human iPSC-cortical neurons exposed to lithium showed an increased neuronal activity under all tested concentrations. Furthermore, we reveal a lithium-induced, concentration-dependent, transition of regular synchronous neuronal network activity using therapeutically effective concentration (<1 mM LiCl) to epileptiform-like neuronal discharges using overdose concentration (>1 mM LiCl). The overdose concentration lithium-induced epileptiform-like activity was similar to the epileptiform-like activity caused by the GABAA-receptor antagonist. Patch–clamp recordings reveal that lithium reduces action potential threshold at all concentrations, however, only overdose concentration causes increased frequency of spontaneous AMPA-receptor mediated transmission. By applying the AMPA-receptor antagonist and anti-epileptic drug Perampanel, we demonstrate that Perampanel suppresses lithium-induced epileptiform-like activity in human cortical neurons. We provide insights in how therapeutically effective and overdose concentration of lithium directly influences human neuronal function at synapse, a single neuron, and neuronal network levels. Furthermore, we provide evidence that Perampanel suppresses pathological neuronal discharges caused by overdose concentrations of lithium in human neurons.
  •  
33.
  • Izsak, Julia, et al. (författare)
  • Human Cerebrospinal Fluid Promotes Neuronal Circuit Maturation of Human Induced Pluripotent Stem Cell-Derived 3D Neural Aggregates
  • 2020
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 14:6, s. 1044-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • Human induced pluripotent stem cell (hiPSC)-derived in vitro neural and organoid models resemble fetal, rather than adult brain properties, indicating that currently applied cultivation media and supplements are insufficient to achieve neural maturation beyond the fetal stage. In vivo, cerebrospinal fluid molecules are regulating the transition of the immature fetal human brain into a mature adult brain. By culturing hiPSC-3D neural aggregates in human cerebrospinal fluid (hCSF) obtained from healthy adult individuals, we demonstrate that hCSF rapidly triggers neurogenesis, gliogenesis, synapse formation, neurite outgrowth, suppresses proliferation of residing neural stem cells, and results in the formation of synchronously active neuronal circuits in vitro within 3 days. Thus, a physiologically relevant and adult brain-like milieu triggers maturation of hiPSC-3D neural aggregates into highly functional neuronal circuits in vitro. The approach presented here opens a new avenue to identify novel physiological factors for the improvement of hiPSC neural in vitro models.
  •  
34.
  • Izsak, Julia, et al. (författare)
  • Robust generation of person-specific, synchronously active neuronal networks using purely isogenic human iPSC-3D neural aggregate cultures
  • 2019
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Reproducibly generating human induced pluripotent stem cell-based functional neuronal circuits, solely obtained from single individuals, poses particular challenges to achieve personalized and patient specific functional neuronal in vitro models. A hallmark of functional neuronal assemblies, synchronous neuronal activity, can be non-invasively studied by microelectrode array (MEA) technology, reliably capturing physiological and pathophysiological aspects of human brain function. In our here presented manuscript, we demonstrate a procedure to generate 3D neural aggregates comprising astrocytes, oligodendroglial cells, and neurons obtained from the same human tissue sample. Moreover, we demonstrate the robust ability of those neurons to create a highly synchronously active neuronal network within 3 weeks in vitro, without additionally applied astrocytes. The fusion of MEA-technology with functional neuronal circuits solely obtained from one individual's cells represent isogenic person-specific human neuronal sensor chips that pave the way for specific personalized in vitro neuronal networks as well as neurological and neuropsychiatric disease modeling.
  •  
35.
  • Izsak, Julia, et al. (författare)
  • TGF-β1 Suppresses Proliferation and Induces Differentiation in Human iPSC Neural in vitro Models
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Persistent neural stem cell (NSC) proliferation is, among others, a hallmark of immaturity in human induced pluripotent stem cell (hiPSC)-based neural models. TGF-β1 is known to regulate NSCs in vivo during embryonic development in rodents. Here we examined the role of TGF-β1 as a potential candidate to promote in vitro differentiation of hiPSCs-derived NSCs and maturation of neuronal progenies. We present that TGF-β1 is specifically present in early phases of human fetal brain development. We applied confocal imaging and electrophysiological assessment in hiPSC-NSC and 3D neural in vitro models and demonstrate that TGF-β1 is a signaling protein, which specifically suppresses proliferation, enhances neuronal and glial differentiation, without effecting neuronal maturation. Moreover, we demonstrate that TGF-β1 is equally efficient in enhancing neuronal differentiation of human NSCs as an artificial synthetic small molecule. The presented approach provides a proof-of-concept to replace artificial small molecules with more physiological signaling factors, which paves the way to improve the physiological relevance of human neural developmental in vitro models.
  •  
36.
  • Johannesson, S., et al. (författare)
  • Bacterial nanocellulose scaffolds; a novel three-dimensional in vitro model for neuronal cell culture
  • 2012
  • Ingår i: Journal of Tissue Engineering and Regenerative Medicine. - 1932-6254 .- 1932-7005. ; 6:Suppl. 1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterized by loss of synapses and neurons. To be able to achieve a deeper understanding of the mechanisms behind neurodegenerative diseases, advanced and reliable in vitro models, preferable based on human cells, are needed. This project focuses on the development of an in vitro artificial 3D neuronal network model based on neuronal cells seeded on nano-cellulose scaffold. The viability and maturity of the neuronal cells grown on the scaffolds have been evaluated using electron microscopy, immunohistochemical- and electrophysiological methods. We have investigated the possibility to use bacterial nanocellulose (BNC) as an extracellular matrix mimic for neural cell culture. To further enhance cell attachment on the BNC we used different chemical surface modifications (THMAP and CDAP-treatment) and protein coatings such as Collagen type 1. The human neuroblastoma cell line SH-SY5Y, was used as a neuronal cell model due to its ability to be differentiated into mature neurons. With electron microscopy the cells were visualized on the material, showing that the cells were well integrated with the BNC and showed good proliferation and viability. Whole cell patch clamp recordings showed that it is possible to differentiate the SH-SY5Y cells to mature neuronal cells on the BNC, as demonstrated with an ability of the cells to produce mature action potentials.
  •  
37.
  • Kim, Malin, et al. (författare)
  • Antisecretory factor modulates GABAergic transmission in the rat hippocampus.
  • 2005
  • Ingår i: Regulatory peptides. - : Elsevier BV. - 0167-0115. ; 129:1-3, s. 109-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Antisecretory Factor (AF) is a protein that has been implicated in the suppression of intestinal hypersecretion and inflammation. Intestinal secretion and inflammation are partly under local and central neural control raising the possibility that AF might exert its action by modulating neural signaling. In the present study we have investigated whether AF can modulate central synaptic transmission. Evoked glutamatergic and GABAergic synaptic transmissions were investigated using extracellular recordings in the CA1 region of hippocampal slices from adult rats. AF (0.5 microg/ml) suppressed GABA(A)-mediated synaptic transmission by about 40% while having no effect on glutamatergic transmission. Per oral administration of cholera toxin as well as feeding of rats with a diet containing hydrothermally processed cereals, known to upregulate endogenous AF plasma activity, mimicked the effect of exogenously administered AF on hippocampal GABAergic transmission. Our results identify AF as a neuromodulator and further raise the possibility that the hippocampus and AF are involved in a gut-brain loop controlling intestinal secretion and inflammation.
  •  
38.
  • Kovalchuk, Yury, et al. (författare)
  • Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation.
  • 2002
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 295:5560, s. 1729-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain-derived neurotrophic factor (BDNF) and other neurotrophins are critically involved in long-term potentiation (LTP). Previous reports point to a presynaptic site of neurotrophin action. By imaging dentate granule cells in mouse hippocampal slices, we identified BDNF-evoked Ca2+ transients in dendrites and spines, but not at presynaptic sites. Pairing a weak burst of synaptic stimulation with a brief dendritic BDNF application caused an immediate and robust induction of LTP. LTP induction required activation of postsynaptic Ca2+ channels and N-methyl-d-aspartate receptors and was prevented by the blockage of postsynaptic Ca2+ transients. Thus, our results suggest that BDNF-mediated LTP is induced postsynaptically. Our finding that dendritic spines are the exclusive synaptic sites for rapid BDNF-evoked Ca2+ signaling supports this conclusion.
  •  
39.
  • Lindgren, Stefan, et al. (författare)
  • Medical education in Sweden
  • 2011
  • Ingår i: Medical teacher. - London : Update. - 0142-159X .- 1466-187X. ; 33:10, s. 798-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Undergraduate medical education in Sweden has moved from nationally regulated, subject-based courses to programmes integrated either around organ systems or physiological and patho-physiological processes, or organised around basic medical science in conjunction with clinical specialities, with individual profiles at the seven medical schools. The national regulations are restricted to overall academic and professional outcomes. The 51/2 year long university undergraduate curriculum is followed by a mandatory 18 months internship, delivered by the County Councils. While quality control and accreditation for the university curriculum is provided by the Swedish National Agency for Higher Education, no such formal control exists for the internship; undergraduate medical education is therefore in conflict with EU directives from 2005. The Government is expected to move towards 6 years long university undergraduate programmes, leading to licence, which will facilitate international mobility of both Swedish and foreign medical students and doctors. Ongoing academic development of undergraduate education is strengthened by the Bologna process. It includes outcome (competence)-based curricula, university Masters level complying with international standards, progression of competence throughout the curriculum, student directed learning, active participation and roles in practical clinical education and a national assessment model to assure professional competence. In the near future, the dimensioning of Swedish undergraduate education is likely to be decided more by international demands and aspects of quality than by national demands for doctors.
  •  
40.
  • Ma, Rong, et al. (författare)
  • Homosynaptic frequency-dependent depression by release site inactivation at neonatal hippocampal synapses in the stratum lacunosum-moleculare
  • 2021
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 54:3, s. 4838-4862
  • Tidskriftsartikel (refereegranskat)abstract
    • When activated at low frequencies (0.1-1 Hz), second postnatal week synapses onto the most distal part of the apical dendritic tree (stratum lacunosum-moleculare) of rat hippocampal CA1 pyramidal cells display a frequency-dependent synaptic depression not observed for the more proximal (stratum radiatum) synapses. Depression in this frequency range is thought of as a possible contributor to behavioural habituation. In fact, in contrast to the proximal synapses, the distal synapses provide more direct sensory information from the entorhinal cortex as well as from thalamic nuclei. The use of antagonists showed that the activation of GABA(A), GABA(B), NMDA, mGlu, kainate, adenosine, or endocannabinoid receptors was not directly involved in the depression, indicating it to be intrinsic to the synapses themselves. While the depression affected paired-pulse plasticity in a manner indicating a decrease in vesicle release probability, the depression could not be explained by a stimulus-dependent decrease in calcium influx. Despite affecting the synaptic response evoked by brief high-frequency stimulation (10 impulses, 20 Hz) in a manner indicating vesicle depletion, the depression was unaffected by large variations in release probability. The depression was found not only to affect the synaptic transmission at low frequencies (0.1-1 Hz) but also to contribute to the depression evolving during brief high-frequency stimulation (10 impulses, 20 Hz). We propose that a release-independent process directly inactivating release sites with a fast onset (ms) and long duration (up to 20 s) underlies this synaptic depression.
  •  
41.
  • Ma, Rong, et al. (författare)
  • Labile glutamate synaptic transmission in the adult CA1 stratum-lacunosum-moleculare region
  • 2024
  • Ingår i: EUROPEAN JOURNAL OF NEUROSCIENCE. - 0953-816X .- 1460-9568. ; 60:3, s. 4362-4389
  • Tidskriftsartikel (refereegranskat)abstract
    • The excitatory monosynaptic activation of hippocampal CA1 pyramidal cells is spatially segregated such that the proximal part of the apical dendritic tree in stratum radiatum (SR) receives input from the hippocampal CA3 region while the distal part in the stratum-lacunosum-moleculare (SLM) receives input mainly from the entorhinal cortex. The AMPA receptor-mediated (AMPA) signalling of SLM synapses in slices from neonatal rats was previously found to considerably differ from that of the SR synapses. In the present study, AMPA signalling of SLM synapses in 1-month-old rats has been examined, that is, when the hippocampus is essentially functionally mature. For the SR synapses, this time is characterized by a facilitatory shift in short-term plasticity, in the disappearance of labile postsynaptic AMPA signalling, a property thought to be important for early activity-dependent organization of neural circuits, and the expression of an adult form of long-term potentiation. We found that the SLM synapses alter their short-term plasticity similarly to that of the SR synapses. However, the labile postsynaptic AMPA signalling was not only maintained but substantially enhanced in the SLM synapses. The long-term potentiation observed was not of the adult form but like that of the neonatal SR synapses based on unsilencing of AMPA labile synapses. We propose that these features of the SLM synapses in the mature hippocampus will help to produce a flexible map of the multimodal sensory input reaching the SLM required for its conjunctive operation with the SR input to generate a proper functional output from the CA1 region. The SLM and SR regions of the hippocampus follow distinct developmental paths as they mature functionally. During maturation, the SLM synapses become more postsynaptically AMPA labile, a property thought to be a developmental feature adapted for the early activity-dependent topographical organization of cortical areas. We propose that the AMPA lability presently observed allows for synaptic flexibility required for the adult SLM region to represent this complex multimodal sensory input.
  •  
42.
  •  
43.
  •  
44.
  • Magnelind, Per, 1975, et al. (författare)
  • HTS SQUID measurements of evoked magnetic fields from transverse hippocampal slices
  • 2007
  • Ingår i: International Congress Series, New Frontiers in Biomagnetism. - : Elsevier BV. - 0531-5131. ; 1300, s. 578-581
  • Konferensbidrag (refereegranskat)abstract
    • We have developed a high-transition-temperature superconducting quantum interference device system aimed at neuromagnetic measurements of evoked fields from in vitro brain slices. Recordings from transverse hippocampal slices from rat have been performed and they showed neuromagnetic fields of ∼ 5 pT
  •  
45.
  • Magnelind, P., et al. (författare)
  • Magnetophysiology of brain slices using HTS SQUID magnetometer system
  • 2009
  • Ingår i: Applications of Nonlinear Dynamics: Model and Design of Complex Systems. Series: Understanding Complex Systems. Eds.: In, Visarath; Longhini, Patrick; Palacios, Antonio. - : Springer. - 9783540856313 ; , s. 323-30
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
46.
  • Malinina, Evgenya (författare)
  • Neurotransmission and functional synaptic plasticity in the rat medial preoptic nucleus
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Brain function implies complex information processing in neuronal circuits, critically dependent on the molecular machinery that enables signal transmission across synaptic contacts between neurons. The types of ion channels and receptors in the neuronal membranes vary with neuron types and brain regions and determine whether neuronal responses will be excitatory or inhibitory and often allow for functional synaptic plasticity which is thought to be the basis for much of the adaptability of the nervous system and for our ability to learn and store memories. The present thesis is a study of synaptic transmission in the medial preoptic nucleus (MPN), a regulatory center for several homeostatic functions but with most clearly established roles in reproductive behaviour. The latter behaviour typically shows several distinct phases with dramatically varying neuronal impulse activity and is also subject to experience-dependent modifications. It seems likely that the synapses in the MPN contribute to the behaviour by means of activity-dependent functional plasticity. Synaptic transmission in the MPN, however, has not been extensively studied and is not well understood. The present work was initiated to clarify the synaptic properties in the MPN. The aim was to achieve a better understanding of the functional properties of the MPN, but also to obtain information on the functional roles of ion channel types for neurotransmission and its plastic properties in general. The studies were carried out using a brain slice preparation from rat as well as acutely isolated neurons with adhering nerve terminals. Presynaptic nerve fibres were stimulated electrically or, in a few cases, by raised external K+ concentration, and postsynaptic responses were recorded by tight-seal perforated-patch techniques, often combined with voltage-clamp control of the post-synaptic membrane potential. Glutamate receptors of α-amino-3-hydroxy-5-methyl-4-izoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) types were identified as mediating the main excitatory synaptic signals and γ-aminobutyric acid (GABA)A receptors as mediating the main inhibitory signals. Both types of signals were suppressed by serotonin. The efficacy of AMPA-receptor-mediated transmission displayed several types of short-term plasticity, including paired-pulse potentiation and paired-pulse depression, depending on the stimulus rate and pattern. The observed plasticity was attributed to mainly presynaptic mechanisms. To clarify some of the presynaptic factors controlling synaptic efficacy, the role of presynaptic L-type Ca2+ channels, usually assumed not to directly control transmitter release, was investigated. The analysis showed that (i) L-type channels are present in GABA-containing presynaptic terminals on MPN neurons, (ii) that these channels provide a means for differential control of spontaneous and impulse-evoked GABA release and (iii) that this differential control is prominent during short-term synaptic plasticity. A model where Ca2+ influx through L-type channels may lead to reduced GABA release via effects on Ca2+-activated K+ channels, membrane potential and other Ca2+-channel types explains the observed findings. In addition, massive Ca2+ influx through L-type channels during high-frequency stimulation may contribute to increased GABA release during post-tetanic potentiation. In conclusion, the findings obtained in the present study indicate that complex neurotransmission mechanisms and different forms of synaptic plasticity contribute to the specific functional properties of the MPN.
  •  
47.
  • Michaëlsson, Henrik, et al. (författare)
  • The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive-like rats
  • 2019
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 225:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Major depressive disorder is a common and debilitating condition with substantial economic impact. Treatment options, although effective, are aimed at relieving the symptoms with limited disease modification. Ketamine, a commonly used anaesthetic, has received substantial attention as it shows rapid antidepressant effects clinically. We studied the effects of ketamine on hippocampal function and dentate gyrus proliferation in rats showing a depressive-like phenotype. Methods Adolescent and adult animals were pre-natally exposed to the glucocorticoid analog dexamethasone, and we verified a depressive-like phenotype using behavioural tests, such as the sucrose preference. We subsequently studied the effects of ketamine on hippocampal synaptic transmission, plasticity and dentate gyrus proliferation. In addition, we measured hippocampal glutamate receptor expression. We also tested the ketamine metabolite hydroxynorketamine for NMDA-receptor independent effects. Results Surprisingly, our extensive experimental survey revealed limited effects of ketamine or its metabolite on hippocampal function in control as well as depressive-like animals. We found no effects on synaptic efficacy or induction of long-term potentiation in adolescent and adult animals. Also there was no difference when comparing the dorsal and ventral hippocampus. Importantly, however, ketamine 24 hours prior to experimentation significantly increased the dentate gyrus proliferation, as revealed by Ki-67 immunostaining, in the depressive-like phenotype. Conclusion We find limited effects of ketamine on hippocampal glutamatergic transmission. Instead, alterations in dentate gyrus proliferation could explain the antidepressant effects of ketamine.
  •  
48.
  • Perez-Alcazar, Marta, et al. (författare)
  • Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3.
  • 2014
  • Ingår i: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 253C, s. 154-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous work implicated the complement system in adult neurogenesis as well as elimination of synapses in the developing and injured CNS. In the present study, we used mice lacking the third complement component (C3) to elucidate the role the complement system plays in hippocampus-dependent learning and synaptic function. We found that the constitutive absence of C3 is associated with enhanced place and reversal learning in adult mice. Our findings of lower release probability at CA3-CA1 glutamatergic synapses in combination with unaltered overall efficacy of these synapses in C3 deficient mice implicate C3 as a negative regulator of the number of functional glutamatergic synapses in the hippocampus. The C3 deficient mice showed no signs of spontaneous epileptiform activity in the hippocampus. We conclude that C3 plays a role in the regulation of the number and function of glutamatergic synapses in the hippocampus and exerts negative effects on hippocampus-dependent cognitive performance.
  •  
49.
  • Perez-Alcazar, Marta, et al. (författare)
  • Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro
  • 2016
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling.
  •  
50.
  • Ponten, Henrik, et al. (författare)
  • Behavioral and neurochemical repercussions of hippocampal network activity blockade during the neonatal period.
  • 2005
  • Ingår i: Brain research. Developmental brain research. - : Elsevier BV. - 0165-3806. ; 155:1, s. 81-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Early destruction of the ventral hippocampus from postnatal day 7 (P7) has been shown to induce behavioral alterations in post-pubertal rats, similar to those observed in models for schizophrenia. Using a single injection of tetanus toxin into the ventral hippocampus at P1, we tested the consequences of an early neonatal activity deprivation (
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 67
Typ av publikation
tidskriftsartikel (55)
konferensbidrag (4)
forskningsöversikt (4)
doktorsavhandling (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (60)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Hanse, Eric, 1962 (60)
Zetterberg, Henrik, ... (14)
Seth, Henrik, 1979 (11)
Gustafsson, Bengt, 1 ... (10)
Wasling, Pontus, 197 ... (10)
Riebe, Ilse, 1978 (10)
visa fler...
Strandberg, Joakim, ... (9)
Björefeldt, Andreas, ... (8)
Illes, Sebastian (7)
Blennow, Kaj, 1958 (6)
Daborg, Jonny (6)
Andersson, My, 1980 (5)
Hanse, Eric (5)
Abrahamsson, Therése ... (4)
Funa, Keiko, 1949 (4)
Andreasson, Ulf, 196 ... (4)
Groc, Laurent (4)
Vizlin-Hodzic, Dzene ... (4)
Izsak, Julia (4)
Theiss, Stephan (4)
Lange, Stefan, 1948 (3)
Portelius, Erik, 197 ... (3)
Winkler, Dag, 1957 (3)
Andersson, Mats, 195 ... (3)
Pekna, Marcela, 1966 (3)
Forsberg, My (3)
Magnelind, Per, 1975 (3)
Olsson, Thomas (2)
Minthon, Lennart (2)
Gatenholm, Paul, 195 ... (2)
Thorsell, Annika, 19 ... (2)
Ågren, Hans (2)
Hansson, Oskar (2)
Asztely, Fredrik, 19 ... (2)
Ågren, Hans, 1945 (2)
Akyürek, Levent, 196 ... (2)
Lindholm, Catharina, ... (2)
Kuzmenko, Volodymyr, ... (2)
Wass, Caroline, 1976 (2)
Tarte, E. (2)
Eriksson, Peter S, 1 ... (2)
Blomstrand, Fredrik, ... (2)
Perez-Alcazar, Marta (2)
Faijerson, Jonas, 19 ... (2)
Xiao, Min-Yi, 1964 (2)
Ma, Rong (2)
Tinsley, Rogan B. (2)
Lyckenvik, Tim (2)
Iljin, Margarita (2)
Tarte, Ed (2)
visa färre...
Lärosäte
Göteborgs universitet (63)
Lunds universitet (6)
Karolinska Institutet (6)
Chalmers tekniska högskola (5)
Linköpings universitet (3)
Umeå universitet (2)
visa fler...
Uppsala universitet (2)
Örebro universitet (1)
visa färre...
Språk
Engelska (64)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (55)
Naturvetenskap (2)
Teknik (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy