SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansen Terese) "

Sökning: WFRF:(Hansen Terese)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buchhave, Lars A., et al. (författare)
  • An abundance of small exoplanets around stars with a wide range of metallicities
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 486:7403, s. 375-377
  • Tidskriftsartikel (refereegranskat)abstract
    • The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets(1-4), supporting the model that planets form by accumulation of dust and ice particles(5). Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets(4,6-9). However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission(10), including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.
  •  
2.
  • Høj Jørgensen, Terese Sara, et al. (författare)
  • Ageing populations in the Nordic countries : Mortality and longevity from 1990 to 2014
  • 2019
  • Ingår i: Scandinavian Journal of Public Health. - : SAGE Publications. - 1403-4948 .- 1651-1905. ; 47:6, s. 611-617
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Cross-country comparisons of mortality and longevity patterns of Nordic populations could contribute with novel insights into the compositional changes of these populations. We investigated three metrics of population ageing: the proportion of the population aged 75+ and 90+ years, the proportion of birth cohorts reaching 75 and 90 years, and life expectancy (LE) at age 75 and 90 years in Sweden, Norway, Iceland, Denmark and Finland, in the period 1990-2014.Methods: Demographic information was collected from national statistical databases and the Human Mortality Database.Results: All metrics on population ageing increased during the study period, but there were some cross-country variations. Finland experienced a notably steep increase in the proportion of 75+ and 90+ year olds compared to the other countries. Regarding the proportion reaching old ages, the Finnish lagged behind from the beginning, but females decreased this difference. The Danes were more similar to the other countries at the beginning, but did not experience the same increase over time. Gender-specific LE at age 75 and 90 years was similar overall in the five countries.Conclusions: Developments in cross-country variation suggest that survival until old age has become more similar for Finnish females and more different for Danish males and females compared with the other countries in recent decades. This provides perspectives on the potential to improve longevity in Denmark and Finland. Similarities in LE in old age suggest that expected mortality in old age has been more similar throughout the study period.
  •  
3.
  • Koch, Andreas, et al. (författare)
  • A Spectroscopic Binary in the Hercules Dwarf Spheroidal Galaxy
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 780:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a(p) sin i = 38 R-circle dot. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.
  •  
4.
  • Qvist, Tavs, et al. (författare)
  • Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia
  • 2015
  • Ingår i: Journal of Cystic Fibrosis. - : Elsevier BV. - 1569-1993 .- 1873-5010. ; 14:1, s. 46-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Nontuberculous mycobacteria (NTM) are an emerging threat to cystic fibrosis (CF) patients but their epidemiology is not well described. Methods: In this retrospective observational study we identified all Scandinavian CF patients with a positive NTM culture from airway secretions from 2000 to the end of 2012 and used national CF databases to describe microbiological and clinical characteristics. Results: During the 13-year period 157 (11%) CF patients were culture positive for NTM at least once. Mycobacterium abscessus complex (MABSC) (45%) and Mycobacterium avium complex (MAC) (32%) were the predominant species with geographical differences in distribution. Younger patients were more prone to MABSC (p < 0.01). Despite treatment, less than one-third of MABSC patients with repeated positive cultures cleared their infection and a quarter had a lung transplant or died. Conclusion: NTM are significant CF pathogens and are becoming. more prevalent in Scandinavia. MABSC and MAC appear to target distinct patient groups. Having multiple positive cultures despite treatment conveys a poor outcome. (C) 2014 The Authors. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society.
  •  
5.
  • Roederer, Ian U., et al. (författare)
  • Element abundance patterns in stars indicate fission of nuclei heavier than uranium
  • 2023
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 382:6675
  • Tidskriftsartikel (refereegranskat)abstract
    • The heaviest chemical elements are naturally produced by the rapid neutron-capture process (r-process) during neutron star mergers or supernovae. The r-process production of elements heavier than uranium (transuranic nuclei) is poorly understood and inaccessible to experiments so must be extrapolated by using nucleosynthesis models. We examined element abundances in a sample of stars that are enhanced in r-process elements. The abundances of elements ruthenium, rhodium, palladium, and silver (atomic numbers Z = 44 to 47; mass numbers A = 99 to 110) correlate with those of heavier elements (63 <= Z <= 78, A > 150). There is no correlation for neighboring elements (34 <= Z <= 42 and 48 <= Z <= 62). We interpret this as evidence that fission fragments of transuranic nuclei contribute to the abundances. Our results indicate that neutron-rich nuclei with mass numbers >260 are produced in r-process events.
  •  
6.
  • Roederer, Ian U., et al. (författare)
  • The R-process Alliance : A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925*
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 260:2, s. 1-29
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a nearly complete rapid neutron-capture process (r-process) chemical inventory of the metal-poor ([Fe/H] = −1.46 ± 0.10) r-process-enhanced ([Eu/Fe] = +1.32 ± 0.08) halo star HD 222925. This abundance set is the most complete for any object beyond the solar system, with a total of 63 metals detected and seven with upper limits. It comprises 42 elements from 31 ≤ Z ≤ 90, including elements rarely detected in r-process-enhanced stars, such as Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, W, Re, Os, Ir, Pt, and Au. We derive these abundances from an analysis of 404 absorption lines in ultraviolet spectra collected using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and previously analyzed optical spectra. A series of appendices discusses the atomic data and quality of fits for these lines. The r-process elements from Ba to Pb, including all elements at the third r-process peak, exhibit remarkable agreement with the solar r-process residuals, with a standard deviation of the differences of only 0.08 dex (17%). In contrast, deviations among the lighter elements from Ga to Te span nearly 1.4 dex, and they show distinct trends from Ga to Se, Nb through Cd, and In through Te. The r-process contribution to Ga, Ge, and As is small, and Se is the lightest element whose production is dominated by the r-process. The lanthanide fraction, log XLa = −1.39 ± 0.09, is typical for r-process-enhanced stars and higher than that of the kilonova from the GW170817 neutron-star merger event. We advocate adopting this pattern as an alternative to the solar r-process-element residuals when confronting future theoretical models of heavy-element nucleosynthesis with observations.
  •  
7.
  • Roederer, Ian U., et al. (författare)
  • The R-Process Alliance : Abundance Universality among Some Elements at and between the First and Second R-Process Peaks
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 936:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A ∼ 80) and second (A ∼ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z = 34) or Te (Z = 52) detections, whose r-process enhancement varies by more than a factor of 30 (−0.22 ≤ [Eu/Fe] ≤ +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 ≤ Z ≤ 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar system r-process residual pattern. The Te abundances in these stars correlate more closely with the lighter r-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (≤0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and third r-process-peak elements. The concept of r-process universality that is recognized among the lanthanide and third-peak elements in r-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighter r-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 ≤ Z ≤ 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and second r-process peaks.
  •  
8.
  • Shah, Shivani P., et al. (författare)
  • The R-Process Alliance : detailed chemical composition of an r-process enhanced star with UV and optical spectroscopy
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:3, s. 1917-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed chemical-abundance analysis of a highly r-process-enhanced (RPE) star, 2MASS J00512646-1053170, using high-resolution spectroscopic observations with Hubble Space Telescope/STIS in the UV and Magellan/MIKE in the optical. We determined abundances for 41 elements in total, including 23 r-process elements and rarely probed species such as Al II, Ge I, Mo II, Cd I, Os II, Pt I, and Au I. We find that [Ge/Fe] = +0.10, which is an unusually high Ge enhancement for such a metal-poor star and indicates contribution from a production mechanism decoupled from that of Fe. We also find that this star has the highest Cd abundance observed for a metal-poor star to date. We find that the dispersion in the Cd abundances of metal-poor stars can be explained by the correlation of Cd I abundances with the stellar parameters of the stars, indicating the presence of NLTE effects. We also report that this star is now only the sixth star with Au abundance determined. This result, along with abundances of Pt and Os, uphold the case for the extension of the universal r-process pattern to the third r-process peak and to Au. This study adds to the sparse but growing number of RPE stars with extensive chemical-abundance inventories and highlights the need for not only more abundance determinations of these rarely probed species, but also advances in theoretical NLTE and astrophysical studies to reliably understand the origin of r-process elements.
  •  
9.
  • Shah, Shivani P., et al. (författare)
  • Uranium Abundances and Ages of r-process Enhanced Stars with Novel U ii Lines*
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar-evolution models. The uranium abundance, which can be determined for metal-poor r-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used a single U ii line at λ3859 Å. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel U ii lines at λ4050 Å and λ4090 Å, in addition to the canonical λ3859 Å line. We find that the U ii lines at λ4050 Å and λ4090 Å are reliable and render U abundances in agreement with the λ3859 U abundance, for all of the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2–002333, HE 1523–0901, and CS 31082–001, using multiple U ii lines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early universe, especially of r-process elements.
  •  
10.
  • Simon, Joshua D., et al. (författare)
  • Timing the r-process Enrichment of the Ultra-faint Dwarf Galaxy Reticulum II
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 944:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with  % of its stars strongly enhanced in r-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ∼80% of the stars in the galaxy, while the remainder of the stars formed ∼3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence of r-process-enhanced stars demonstrates that the r-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and the r-process nucleosynthesis to be less than 500 Myr. This measurement rules out an r-process source with a delay time of several Gyr or more, such as GW170817.
  •  
11.
  • Thidemann Hansen, Terese, 1983-, et al. (författare)
  • Evidence for multiple nucleosynthetic processes from carbon-enhanced metal-poor stars in the Carina dwarf spheroidal galaxy
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Carbon-enhanced metal-poor (CEMP) stars ([C/Fe] > 0.7) are known to exist in large numbers at low metallicity in the Milky Way halo and are important tracers of early Galactic chemical evolution. However, very few stars of this kind have been identified in the classical dwarf spheroidal (dSph) galaxies, and detailed abundances, including neutron-capture element abundances, have only been reported for 13 stars.Aims. We aim to derive detailed abundances of six CEMP stars identified in the Carina dSph and compare the abundances to CEMP stars in other dSph galaxies and the Milky Way halo. This is the largest sample of CEMP stars in a dSph galaxy analysed to date.Methods. One-dimensional local thermodynamic equilibrium (LTE) elemental abundances are derived via equivalent width and spectral synthesis using high-resolution spectra of the six stars obtained with the MIKE spectrograph at Las Campanas Observatory.Results. We derived abundances or upper limits for up to 27 elements from C to Os in the six stars. Our analysis reveals one of the stars to be a CEMP-no star with very low neutron-capture element abundances. In contrast, the other five stars all show enhancements in neutron-capture elements in addition to their carbon enhancement, classifying them as CEMP-s and -r/s stars. The six stars have similar a and iron-peak element abundances to other stars in Carina, except for the CEMP-no star, which shows enhancement in Na, Mg, and Si. We explored the absolute carbon abundances (A(C)) of CEMP stars in dSph galaxies and find similar behaviour to that seen for Milky Way halo CEMP stars, but highlight that CEMP-r/s stars primarily have very high A(C) values. We also compared the neutron-capture element abundances of the CEMP-r/s stars in our sample to recent i-process yields, which provide a good match to the derived abundances.
  •  
12.
  • Usman, Sam A., et al. (författare)
  • Multiple populations and a CH star found in the 300S globular cluster stellar stream
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:3, s. 2413-2427
  • Tidskriftsartikel (refereegranskat)abstract
    • Milky Way globular clusters (GCs) display chemical enrichment in a phenomenon called multiple stellar populations (MSPs). While the enrichment mechanism is not fully understood, there is a correlation between a cluster’s mass and the fraction of enriched stars found therein. However, present-day GC masses are often smaller than their masses at the time of formation due to dynamical mass-loss. In this work, we explore the relationship between mass and MSPs using the stellar stream 300S. We present the chemical abundances of eight red giant branch member stars in 300S with high-resolution spectroscopy from Magellan/MIKE. We identify one enriched star characteristic of MSPs and no detectable metallicity dispersion, confirming that the progenitor of 300S was a GC. The fraction of enriched stars (12.5 per cent) observed in our 300S stars is less than the 50 per cent of stars found enriched in Milky Way GCs of comparable present-day mass (∼104.5 M⊙⁠). We calculate the mass of 300S’s progenitor and compare it to the initial masses of intact GCs, finding that 300S aligns well with the trend between the system mass at formation and enrichment. 300S’s progenitor may straddle the critical mass threshold for the formation of MSPs and can therefore serve as a benchmark for the stellar enrichment process. Additionally, we identify a CH star, with high abundances of s-process elements, probably accreted from a binary companion. The rarity of such binaries in intact GCs may imply stellar streams permit the survival of binaries that would otherwise be disrupted.
  •  
13.
  • Webber, K. B., et al. (författare)
  • Chemical Analysis of the Brightest Star of the Cetus II Ultrafaint Dwarf Galaxy Candidate
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed chemical abundance analysis of the brightest star in the ultrafaint dwarf (UFD) galaxy candidate Cetus II from high-resolution Magellan/MIKE spectra. For this star, DES J011740.53-173053, abundances or upper limits of 18 elements from carbon to europium are derived. Its chemical abundances generally follow those of other UFD galaxy stars, with a slight enhancement of the alpha-elements (Mg, Si, and Ca) and low neutron-capture element (Sr, Ba, and Eu) abundances supporting the classification of Cetus II as a likely UFD. The star exhibits lower Sc, Ti, and V abundances than Milky Way (MW) halo stars with similar metallicity. This signature is consistent with yields from a supernova originating from a star with a mass of similar to 11.2 M-circle dot. In addition, the star has a potassium abundance of [K/Fe] = 0.81, which is somewhat higher than the K abundances of MW halo stars with similar metallicity, a signature that is also present in a number of UFD galaxies. A comparison including globular clusters and stellar stream stars suggests that high K is a specific characteristic of some UFD galaxy stars and can thus be used to help classify objects as UFD galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy