SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Harms Hauke) "

Sökning: WFRF:(Harms Hauke)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buehligen, Franziska, et al. (författare)
  • Analysis of aging in lager brewing yeast during serial repitching
  • 2014
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 187, s. 60-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial repitching of brewing yeast inoculates is an important economic factor in the brewing industry, as their propagation is time and resource intensive. Here, we investigated whether replicative aging and/or the population distribution status changed during serial repitching in three different breweries with the same brewing yeast strain but different abiotic backgrounds and repitching regimes with varying numbers of reuses. Next to bud scar numbers the DNA content of the Saccharomyces pastorianus HEBRU cells was analyzed. Gene expression patterns were investigated using low-density microarrays with genes for aging, stress, storage compound metabolism and cell cycle. Two breweries showed a stable rejuvenation rate during serial repitching. In a third brewery the fraction of virgin cells varied, which could be explained with differing wort aeration rates. Furthermore, the number of bud scars per cell and cell size correlated in all 3 breweries throughout all runs. Transcriptome analyses revealed that from the 6th run on, mainly for the cells positive gene expression could be seen, for example up-regulation of trehalose and glycogen metabolism genes. Additionally, the cells' settling in the cone was dependent on cell size, with the lowest and the uppermost cone layers showing the highest amount of dead cells. In general, cells do not progressively age during extended serial repitching.
  •  
2.
  • Buehligen, Franziska, et al. (författare)
  • Sustainability of industrial yeast serial repitching practice studied by gene expression and correlation analysis
  • 2013
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 168:4, s. 718-728
  • Tidskriftsartikel (refereegranskat)abstract
    • Bottom-fermenting Saccharomyces pastorianus strains driving brewing fermentation processes are usually reused several times. It is still unclear, whether the number of successions may have an impact on cell physiology prompting consequences for brewing quality. In this study, fermentation performance of up to twenty consecutive runs in a brewery was investigated. For each run mRNA expression levels of cellular marker molecules, which are known to correlate with metabolism, hexose transport, aging processes, stress response mechanisms and flocculation capability was estimated to obtain information on changes in cell physiology over the successive runs. Low-density microarrays were used for this purpose and the resulting gene expression profiles were finally correlated with changes in the abiotic micro-environments. A surprising stability of the marker molecule expression profiles within each specific serial repitching was stated. Loss of flocculation or an advanced aging could not be detected during serial repitching in the analyzed brewery. However, certain runs of the serial repitchings showed high variation in stress response which was found to be caused by perturbations of the abiotic conditions. Regardless, the study showed that S. pastorianus can be used repeatedly in serial repitching processes without loss of prominent physiological characteristics.
  •  
3.
  • Fetzer, Ingo, et al. (författare)
  • The extent of functional redundancy changes as species' roles shift in different environments
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:48, s. 14888-14893
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing the ecological impacts of environmental change requires knowledge of the relationship between biodiversity and ecosystem functioning. The exact nature of this relationship can differ considerably between ecosystems, with consequences for the efficacy of species diversity as a buffer against environmental change. Using a microbial model system, we show that the relationship can vary depending on environmental conditions. Shapes suggesting functional redundancy in one environment can change, suggesting functional differences in another environment. We find that this change is due to shifting species roles and interactions. Species that are functionally redundant in one environment may become pivotal in another. Thus, caution is advised in drawing conclusions about functional redundancy based on a single environmental situation. It also implies that species richness is important because it provides a pool of species with potentially relevant traits. These species may turn out to be essential performers or partners in new interspecific interactions after environmental change. Therefore, our results challenge the generality of functional redundancy.
  •  
4.
  • Glaser, Karin, et al. (författare)
  • The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 537, s. 33-42
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the effect of land use intensity, soil parameters and vegetation on protistan communities in grassland soils. We performed qualitative (T-RFLP) and quantitative (qPCR) analyses using primers specifically targeting the 18S rRNA gene for all Eukarya and for two common flagellate groups, i.e. the Chrysophyceae and the Kinetoplastea. Both approaches were applied to extracted soil DNA and RNA, in order to distinguish between the potentially active protists (i.e. RNA pool) and the total protistan communities, including potentially inactive and encysted cells (i.e. DNA pool). Several environmental determinants such as site, soil parameters and vegetation had an impact on the T-RFLP community profiles and the abundance of the quantified 18S rRNA genes. Correlating factors often differed between quantitative (qPCR) and qualitative (T-RFLP) approaches. For instance the Chrysophyceae/Eukarya 18S rDNA ratio as determined by qPCR correlated with the C/N ratio, whereas the community composition based on T-RLFP analysis was not affected indicating that both methods taken together provide a more complete picture of the parameters driving protist diversity. Moreover, distinct T-RFs were obtained, which could serve as potential indicators for either active organisms or environmental conditions like water content. While site was the main determinant across all investigated exploratories, land use seemed to be of minor importance for structuring protist communities. The impact of other parameters differed between the target groups, e.g. Kinetoplastea reacted on changes to water content on all sites, whereas Chrysophyceae were only affected in the Schorfheide. Finally, in most cases different responses were observed on RNA- and DNA-level, respectively. Vegetation for instance influenced the two flagellate groups only at the DNA-level across all sites. Future studies should thus include different protistan groups and also distinguish between active and inactive cells, in order to reveal causal shifts in community composition and abundance in agriculturally used systems.
  •  
5.
  • Jahn, Michael, et al. (författare)
  • Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR
  • 2016
  • Ingår i: Microbial Cell Factories. - : BioMed Central. - 1475-2859. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Plasmids are widely used for molecular cloning or production of proteins in laboratory and industrial settings. Constant modification has brought forth countless plasmid vectors whose characteristics in terms of average plasmid copy number (PCN) and stability are rarely known. The crucial factor determining the PCN is the replication system; most replication systems in use today belong to a small number of different classes and are available through repositories like the Standard European Vector Architecture (SEVA). Results: In this study, the PCN was determined in a set of seven SEVA-based expression plasmids only differing in the replication system. The average PCN for all constructs was determined by Droplet Digital PCR and ranged between 2 and 40 per chromosome in the host organism Escherichia coli. Furthermore, a plasmid-encoded EGFP reporter protein served as a means to assess variability in reporter gene expression on the single cell level. Only cells with one type of plasmid (RSF1010 replication system) showed a high degree of heterogeneity with a clear bimodal distribution of EGFP intensity while the others showed a normal distribution. The heterogeneous RSF1010-carrying cell population and one normally distributed population (ColE1 replication system) were further analyzed by sorting cells of sub-populations selected according to EGFP intensity. For both plasmids, low and highly fluorescent sub-populations showed a remarkable difference in PCN, ranging from 9.2 to 123.4 for ColE1 and from 0.5 to 11.8 for RSF1010, respectively. Conclusions: The average PCN determined here for a set of standardized plasmids was generally at the lower end of previously reported ranges and not related to the degree of heterogeneity. Further characterization of a heterogeneous and a homogeneous population demonstrated considerable differences in the PCN of sub-populations. We therefore present direct molecular evidence that the average PCN does not represent the true number of plasmid molecules in individual cells.
  •  
6.
  • Koch, Christin, et al. (författare)
  • CHIC - An automated approach for the detection of dynamic variations in complex microbial communities
  • 2013
  • Ingår i: Cytometry Part A. - : Wiley. - 1552-4922 .- 1552-4930. ; 83A:6, s. 561-567
  • Tidskriftsartikel (refereegranskat)abstract
    • Altering environmental conditions change structures of microbial communities. These effects have an impact on the single-cell level and can be sensitively detected using community flow cytometry. However, although highly accurate, microbial monitoring campaigns are still rarely performed applying this technique. One reason is the limited access to pattern analysis approaches for the evaluation of microbial cytometric data. In this article, a new analyzing tool, Cytometric Histogram Image Comparison (CHIC), is presented, which realizes trend interpretation of variations in microbial community structures (i) without any previous definition of gates, by working (ii) person independent, and (iii) with low computational demand. Various factors influencing a sensitive determination of changes in community structures were tested. The sensitivity of this technique was found to discriminate down to 0.5% internal variation. The final protocol was exemplarily applied to a complex microbial community dataset, and correlations to experimental variation were successfully shown.
  •  
7.
  • Lucas, Rico, et al. (författare)
  • Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops
  • 2015
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press (OUP). - 0168-6496 .- 1574-6941. ; 91:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Biogas is an important renewable energy carrier. It is a product of stepwise anaerobic degradation of organic materials by highly diverse microbial communities forming complex interlinking metabolic networks. Knowledge about the microbial background of long-term stable process performance in full-scale reactors is crucial for rationally improving the efficiency and reliability of biogas plants. To generate such knowledge, in the present study three parallel mesophilic full-scale reactors fed exclusively with energy crops were sampled weekly over one year. Physicochemical process parameters were determined and the microbial communities were analysed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and 454-amplicon sequencing. For investigating the methanogenic community, a high-resolution T-RFLP approach based on the mcrA gene was developed by selecting restriction enzymes with improved taxonomic resolution compared to previous studies. Interestingly, no Methanosarcina-related generalists, but rather specialized hydrogenotrophic and acetoclastic methanogenic taxa were detected. In general, the microbial communities in the non-connected reactors were remarkably stable and highly similar indicating that identical environmental and process parameters resulted in identical microbial assemblages and dynamics. Practical implications such as flexible operation schemes comprising controlled variations of process parameters for an efficient microbial resource management under fluctuating process conditions are discussed.
  •  
8.
  • Saleem, Muhammad, et al. (författare)
  • Diversity of protists and bacteria determines predation performance and stability
  • 2013
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 7:10, s. 1912-1921
  • Tidskriftsartikel (refereegranskat)abstract
    • Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.
  •  
9.
  • Saleem, Muhammad, et al. (författare)
  • Trophic complexity in aqueous systems : bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal
  • 2016
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 283:1825
  • Tidskriftsartikel (refereegranskat)abstract
    • Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN.
  •  
10.
  • Tischer, Karolin, et al. (författare)
  • Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer
  • 2013
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 15:9, s. 2603-2615
  • Tidskriftsartikel (refereegranskat)abstract
    • Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer. Sixty sediment sections were analysed using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting, cloning and sequencing of bacterial and archaeal 16S rRNA genes, complemented by chemical analyses of petroleum hydrocarbons, methane, oxygen and alternative terminal electron acceptors. Multivariate statistics revealed concentrations of contaminants and the position of the water table as significant factors shaping the microbial community composition. Micro-organisms with highest T-RFLP abundances were related to sulphate reducers belonging to the genus Desulfosporosinus, fermenting bacteria of the genera Sedimentibacter and Smithella, and aerobic hydrocarbon degraders of the genus Acidovorax. Furthermore, the acetoclastic methanogens Methanosaeta, and hydrogenotrophic methanogens Methanocella and Methanoregula were detected. Whereas sulphate and sulphate reducers prevail at the contamination source, the detection of methane, fermenting bacteria and methanogenic archaea further downstream points towards syntrophic hydrocarbon degradation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy