SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haubois X.) "

Sökning: WFRF:(Haubois X.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chiavassa, A., et al. (författare)
  • Radiative hydrodynamics simulations of red supergiant stars II. Simulations of convection on Betelgeuse match interferometric observations
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 515, s. A12-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The red supergiant (RSG) Betelgeuse is an irregular variable star. Convection may play an important role in understanding this variability. Interferometric observations can be interpreted using sophisticated simulations of stellar convection. Aims. We compare the visibility curves and closure phases obtained from our 3D simulation of RSG convection with CO5BOLD to various interferometric observations of Betelgeuse from the optical to the H band to characterize and measure the convection pattern on this star. Methods. We use a 3D radiative-hydrodynamics (RHD) simulation to compute intensity maps in different filters and thus derive interferometric observables using the post-processing radiative transfer code OPTIM3D. The synthetic visibility curves and closure phases are compared to observations. Results. We provide a robust detection of the granulation pattern on the surface of Betelgeuse in both the optical and the H band based on excellent fits to the observed visibility points and closure phases. We determine that the Betelgeuse surface in the H band is covered by small to medium scale (5-15 mas) convection-related surface structures and a large (approximate to 30 mas) convective cell. In this spectral region, H2O molecules are the main absorbers and contribute to both the small structures and the position of the first null of the visibility curve (i.e., the apparent stellar radius).
  •  
2.
  • Chiavassa, A., et al. (författare)
  • VLTI/AMBER spectro-interferometric imaging of VX Sagittarii's inhomogenous outer atmosphere
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 511, s. A51-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to explore the photosphere of the very cool late-type star VX Sgr and in particular the characterization of molecular layers above the continuum forming photosphere. Methods. We obtained interferometric observations with the VLTI/AMBER interferometer using the fringe tracker FINITO in the spectral domain 1.45-2.50 mu m with a spectral resolution of approximate to 35 and baselines ranging from 15 to 88 m. We performed independent image reconstruction for different wavelength bins and fit the interferometric data with a geometrical toy model. We also compared the data to 1D dynamical models of Miras atmosphere and to 3D hydrodynamical simulations of red supergiant (RSG) and asymptotic giant branch (AGB) stars. Results. Reconstructed images and visibilities show a strong wavelength dependence. The H-band images display two bright spots whose positions are confirmed by the geometrical toy model. The inhomogeneities are qualitatively predicted by 3D simulations. At approximate to 2.00 mu m and in the region 2.35-2.50 mu m, the photosphere appears extended and the radius is larger than in the H band. In this spectral region, the geometrical toy model locates a third bright spot outside the photosphere that can be a feature of the molecular layers. The wavelength dependence of the visibility can be qualitatively explained by 1D dynamical models of Mira atmospheres. The best-fitting photospheric models show a good match with the observed visibilities and give a photospheric diameter of Theta = 8.82 +/- 0.50 mas. The H2O molecule seems to be the dominant absorber in the molecular layers. Conclusions. We show that the atmosphere of VX Sgr seems to resemble Mira/AGB star model atmospheres more closely than do RSG model atmospheres. In particular, we see molecular ( water) layers that are typical of Mira stars.
  •  
3.
  • Climent, J. B., et al. (författare)
  • VLTI-PIONIER imaging of the red supergiant V602 Carinae
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Red supergiant stars possess surface features and extended molecular atmospheres. Photospheric convection may be a crucial factor of the levitation of the outer atmospheric layers. However, the mechanism responsible is still poorly understood.Aims. We image the stellar surface of V602 Carinae (V602 Car) to constrain the morphology and contrast of the surface features and of the extended atmospheric layers.Methods. We observed V602 Car with the Very Large Telescope Interferometer PIONIER instrument (1.53-1.78 mu m) between May and July 2016, and April and July 2019 with different telescope configurations. We compared the image reconstructions with 81 temporal snapshots of 3D radiative-hydrodynamics (RHD) (COBOLD)-B-5 simulations in terms of contrast and morphology, using the Structural Similarity Index.Results. The interferometric data are compatible with an overall spherical disk of angular diameter 4.4 0.2 mas, and an extended molecular layer. In 2016, the reconstructed image reveals a bright arc-like feature toward the northern rim of the photospheric surface. In 2019, an arc-like feature is seen at a different orientation and a new peak of emission is detected on the opposite side. The contrasts of the reconstructed surface images are 11% +/- 2% and 9% +/- 2% for 2016 and 2019, respectively. The morphology and contrast of the two images are consistent with 3D RHD simulations, within our achieved spatial resolution and dynamic range. The extended molecular layer contributes 10-13% of the total flux with an angular diameter of 6-8 mas. It is present but not clearly visible in the reconstructed images because it is close to the limits of the achieved dynamic range. The presence of the molecular layer is not reproduced by the 3D RHD simulations.Conclusions. 3D RHD simulations predict substructures similar to the observed surface features of V602 Car at two different epochs. We interpret the structure on the stellar surface as being related to instationary convection. This structure is further convolved to larger observed patches on the stellar surface with our observational spatial resolution. Even though the simulations reproduce the observed features on the stellar surface, convection alone may not be the only relevant process that is levitating the atmosphere.
  •  
4.
  • Garcia-Lopez, R., et al. (författare)
  • A measure of the size of the magnetospheric accretion region in TW Hydrae
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 584:7822, s. 547-550
  • Tidskriftsartikel (refereegranskat)abstract
    • Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk close to the corotation radius, at which the disk rotates at the same rate as the star. Spectro-interferometric studies in young stellar objects show that hydrogen emission (a well known tracer of accretion activity) mostly comes from a region a few milliarcseconds across, usually located within the dust sublimation radius1–3. The origin of the hydrogen emission could be the stellar magnetosphere, a rotating wind or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that Brackett γ (Brγ) emission is spatially resolved rules out the possibility that most of the emission comes from the magnetosphere4–6 because the weak magnetic fields (some tenths of a gauss) detected in these sources7,8 result in very compact magnetospheres. In the case of T Tauri sources, their larger magnetospheres should make them easier to resolve. The small angular size of the magnetosphere (a few tenths of a milliarcsecond), however, along with the presence of winds9,10 make the interpretation of the observations challenging. Here we report optical long-baseline interferometric observations that spatially resolve the inner disk of the T Tauri star TW Hydrae. We find that the near-infrared hydrogen emission comes from a region approximately 3.5 stellar radii across. This region is within the continuum dusty disk emitting region (7 stellar radii across) and also within the corotation radius, which is twice as big. This indicates that the hydrogen emission originates in the accretion columns (funnel flows of matter accreting onto the star), as expected in magnetospheric accretion models, rather than in a wind emitted at much larger distance (more than one astronomical unit).
  •  
5.
  • Koutoulaki, M., et al. (författare)
  • The GRAVITY young stellar object survey: IV. The CO overtone emission in 51 Oph at sub-au scales
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 51 Oph is a Herbig Ae/Be star that exhibits strong near-infrared CO ro-vibrational emission at 2.3 μm, most likely originating in the innermost regions of a circumstellar disc. Aims. We aim to obtain the physical and geometrical properties of the system by spatially resolving the circumstellar environment of the inner gaseous disc. Methods. We used the second-generation Very Large Telescope Interferometer instrument GRAVITY to spatially resolve the continuum and the CO overtone emission. We obtained data over 12 baselines with the auxiliary telescopes and derive visibilities, and the differential and closure phases as a function of wavelength. We used a simple local thermal equilibrium ring model of the CO emission to reproduce the spectrum and CO line displacements. Results. Our interferometric data show that the star is marginally resolved at our spatial resolution, with a radius of ∼10.58 ± 2.65R·. The K-band continuum emission from the disc is inclined by 63° ± 1°, with a position angle of 116° ± 1°, and 4 ± 0.8 mas (0.5 ± 0.1 au) across. The visibilities increase within the CO line emission, indicating that the CO is emitted within the dust-sublimation radius. By modelling the CO bandhead spectrum, we derive that the CO is emitted from a hot (T = 1900-2800 K) and dense (NCO = (0.9-9) × 1021 cm-2) gas. The analysis of the CO line displacement with respect to the continuum allows us to infer that the CO is emitted from a region 0.10 ± 0.02 au across, well within the dust-sublimation radius. The inclination and position angle of the CO line emitting region is consistent with that of the dusty disc. Conclusions. Our spatially resolved interferometric observations confirm the CO ro-vibrational emission within the dust-free region of the inner disc. Conventional disc models exclude the presence of CO in the dust-depleted regions of Herbig AeBe stars. Ad hoc models of the innermost disc regions, that can compute the properties of the dust-free inner disc, are therefore required.
  •  
6.
  • Lacour, S., et al. (författare)
  • The limb-darkened Arcturus : imaging with the IOTA/IONIC interferometer
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 485:2, s. 561-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We undertook an H band interferometric examination of Arcturus, a star frequently used as a spatial and spectral calibrator. Methods. Using the IOTA 3 telescope interferometer, we performed spectro-interferometric observations (R approximate to 35) of Arcturus. Atmospheric models and prescriptions were fitted to the data to derive the brightness distribution of the photosphere. Image reconstruction was performed using two software algorithms: WISARD and MIRA. Results. An achromatic power law proved to be a good model of the brightness distribution, with a limb darkening compatible with the one derived from atmospheric model simulations using our mARCS model. A Rosseland diameter of 21.05 +/- 0.21 was derived, corresponding to an effective temperature of T-eff = 4295 +/- 26 K. No companion was detected from the closure phases, with an upper limit on the brightness ratio of 8 x 10(-4) at 1 AU. The dynamic range at such distance from the photosphere was established as 1.5 x 10(-4) (1 sigma rms). An upper limit of 1.7 x 10(-3) was also derived for the level of brightness asymmetries present in the photosphere.
  •  
7.
  • Lacour, S., et al. (författare)
  • The mass of β Pictoris c from β Pictoris b orbital motion
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet.Methods. We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations.Results. From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04(-3.10)(+4.53) M-Jup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15(-1.06)(+1.08) M-Jup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89(-0.75)(+0.75) M-Jup. With a semimajor axis of 2.68 +/- 0.02 au, a period of 1221 +/- 15 days, and an eccentricity of 0.32 +/- 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets' dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet.
  •  
8.
  • Lagrange, A. M., et al. (författare)
  • Unveiling the beta Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby and young beta Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at similar or equal to 9 au, as well as an inner planet orbiting at similar or equal to 2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution.Aims. We aim to further constrain the orbital and physical properties of beta Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system.Methods. We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry.Results. The orbital properties of both planets are constrained with a semi-major axis of 9.8 0.4 au and 2.7 +/- 0.02 au for b and c, respectively, and eccentricities of 0.09 +/- 0.1 and 0.27 +/- 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of beta Pictoris c might still be over-estimated. If no prior is provided on the mass of beta Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of beta Pictoris b, we find a solution in the 10-11 M-Jup range. Conversely, beta Pictoris c's mass is well constrained, at 7.8 +/- 0.4 M-Jup, assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the beta Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2 sigma level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M-Jup closer than 3 au, and more massive than 3.5 M-Jup between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M-Jup.Conclusions. Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of beta Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of beta Pictoris b.
  •  
9.
  • Wittkowski, M., et al. (författare)
  • VLTI-GRAVITY measurements of cool evolved stars I. Variable photosphere and extended atmosphere of the Mira star R Peg
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Dynamic model atmospheres of Mira stars predict variabilities in the photospheric radius and in atmospheric molecular layers which are not yet strongly constrained by observations. Aims. Here we measure the variability of the oxygen-rich Mira star R Peg in near-continuum and molecular bands. Methods. We used near-infrared K-band spectro-interferometry with a spectral resolution of about 4000 obtained at four epochs between post-maximum and minimum visual phases employing the newly available GRAVITY beam combiner at the Very Large Telescope Interferometer (VLTI). Results. Our observations show a continuum radius that is anti-correlated with the visual lightcurve. Uniform disc (UD) angular diameters at a near-continuum wavelength of 2.25 mu m are steadily increasing with values of 8.7 +/- 0.1 mas, 9.4 +/- 0.1 mas, 9.8 +/- 0.1 mas, and 9.9 +/- 0.1 mas at visual phases of 0.15, 0.36, 0,45, 0.53, respectively. UD diameters at a bandpass around 2.05 mu m, dominated by water vapour, follow the near-continuum variability at larger UD diameters between 10.7 mas and 11.7 mas. UD diameters at the CO 2-0 bandhead, instead, are correlated with the visual lightcurve and anti-correlated with the near-continuum UD diameters, with values between 12.3 mas and 11.7 mas. Conclusions. The observed anti-correlation between continuum radius and visual lightcurve is consistent with an earlier study of the oxygen-rich Mira S Lac, and with recent 1D CODEX dynamic model atmosphere predictions. The amplitude of the variation is comparable to the earlier observations of S Lac, and smaller than predicted by CODEX models. The wavelength-dependent visibility variations at our epochs can be reproduced by a set of CODEX models at model phases between 0.3 and 0.6. The anti-correlation of water vapour and CO contributions at our epochs suggests that these molecules undergo different processes in the extended atmosphere along the stellar cycle. The newly available GRAVITY instrument is suited to conducting longer time series observations, which are needed to provide strong constraints on the model-predicted intra-and inter-cycle variability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy