SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haumaitre Cécile) "

Sökning: WFRF:(Haumaitre Cécile)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Quilichini, Evans, et al. (författare)
  • Insights into the etiology and physiopathology of MODY5/HNF1B pancreatic phenotype with a mouse model of the human disease
  • 2021
  • Ingår i: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 254:1, s. 31-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Maturity‐onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron‐2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total β‐cell volume. These defects were associated with a 30% decrease in expression of the pro‐endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar‐to‐ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research.
  •  
2.
  • Torell, Frida, et al. (författare)
  • Metabolic Profiling of Multiorgan Samples : Evaluation of MODY5/RCAD Mutant Mice
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:7, s. 2293-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we performed a metabolomics analysis to evaluate a MODY5/RCAD mouse mutant line as a potential model for HNF1B-associated diseases. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) of gut, kidney, liver, muscle, pancreas, and plasma samples uncovered the tissue specific metabolite distribution. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to identify the differences between MODY5/RCAD and wild-type mice in each of the tissues. The differences included, for example, increased levels of amino acids in the kidneys and reduced levels of fatty acids in the muscles of the MODY5/RCAD mice. Interestingly, campesterol was found in higher concentrations in the MODY5/RCAD mice, with a four-fold and three-fold increase in kidneys and pancreas, respectively. As expected, the MODY5/RCAD mice displayed signs of impaired renal function in addition to disturbed liver lipid metabolism, with increased lipid and fatty acid accumulation in the liver. From a metabolomics perspective, the MODY5/RCAD model was proven to display a metabolic pattern similar to what would be suspected in HNF1B-associated diseases. These findings were in line with the presumed outcome of the mutation based on the different anatomy and function of the tissues as well as the effect of the mutation on development.
  •  
3.
  • Torell, Frida, et al. (författare)
  • Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umea University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.
  •  
4.
  • Torell, Frida, 1988-, et al. (författare)
  • Tissue sample stability : thawing effect on multi-organ samples
  • 2016
  • Ingår i: Metabolomics. - : Springer. - 1573-3882 .- 1573-3890. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Correct handling of samples is essential in metabolomic studies. Improper handling and prolonged storage of samples has unwanted effects on the metabolite levels. The aim of this study was to identify the effects that thawing has on different organ samples. Organ samples from gut, kidney, liver, muscle and pancreas were analyzed for a number of endogenous metabolites in an untargeted metabolomics approach, using gas chromatography time of flight mass spectrometry at the Swedish Metabolomics Centre, Umeå University, Sweden. Multivariate data analysis was performed by means of principal component analysis and orthogonal projection to latent structures discriminant analysis. The results showed that the metabolic changes caused by thawing were almost identical for all organs. As expected, there was a marked increase in overall metabolite levels after thawing, caused by increased protein and cell degradation. Cholesterol was one of the eight metabolites found to be decreased in the thawed samples in all organ groups. The results also indicated that the muscles are less susceptible to oxidation compared to the rest of the organ samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy