SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hausmaninger Thomas 1987 ) "

Sökning: WFRF:(Hausmaninger Thomas 1987 )

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johansson, Alexandra C., 1987-, et al. (författare)
  • Broadband Complex Refractive Index Spectroscopy via Measurement of Cavity Modes
  • 2018
  • Ingår i: 2018 Conference on Lasers and Electro-Optics (CLEO). - : IEEE. - 9781943580422
  • Konferensbidrag (refereegranskat)abstract
    • We retrieve high precision absorption and dispersion spectra of the 3v(1)+v(3) band of CO2 from direct measurement of cavity transmission modes using an optical frequency comb and a mechanical Fourier transfolin spectrometer with sub-nominal resolution.
  •  
2.
  • Johansson, Alexandra C., 1987-, et al. (författare)
  • Cavity-enhanced complex refractive index spectroscopy of entire molecular bands using a frequency comb
  • 2018
  • Ingår i: Optics InfoBase Conference Papers. - : Optica Publishing Group. - 9781943580477
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate broadband calibration-free complex refractive index spectroscopy of entire molecular bands by direct measurement of transmission modes of a Fabry-Perot cavity using frequency comb-based Fourier transform spectrometer with sub-nominal resolution.
  •  
3.
  • Johansson, Alexandra C., 1987-, et al. (författare)
  • Precise comb-based fourier transform spectroscopy for line parameter retrieval
  • 2019
  • Ingår i: 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/EUROPE-EQEC). - : Institute of Electrical and Electronics Engineers (IEEE). - 9781728104690
  • Konferensbidrag (refereegranskat)abstract
    • Accurate parameters of molecular transitions are needed for data analysis in many applications, ranging from atmospheric research to astrophysics and determination of fundamental constants. Optical frequency comb Fourier transform spectroscopy (OFC-FTS) is particularly well-suited for high-precision measurements of broadband molecular spectra. From these spectra, the parameters of individual transitions - all measured simultaneously under the same experimental conditions - can be determined. We use a mechanical OFC-FTS spectrometer with sub-nominal resolution [1, 2] to perform precise broadband measurements of entire molecular bands of CO2 using either direct absorption spectroscopy or cavity-enhanced complex refractive index spectroscopy (CE-CRIS) [3] and we extract line parameters for line shapes beyond the Voigt profile.
  •  
4.
  •  
5.
  • Axner, Ove, 1957-, et al. (författare)
  • Noise-immune cavity-enhanced analytical atomic spectrometry — NICE-AAS : a technique for detection of elements down to zeptogram amounts
  • 2014
  • Ingår i: Spectrochimica Acta Part B - Atomic Spectroscopy. - : Elsevier. - 0584-8547 .- 1873-3565. ; 100, s. 211-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5×10−12 cm−1 Hz−1∕2 (corresponding to a single-pass absorbance of 7×10−11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm3 (10 fg/m3 or 10-5 ng/m3), which corresponds to 25 atoms/cm3, and Na down to 0.5 zg (zg = zeptogram = 10-21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:1021) in liquid solution (assuming a sample of 10 µL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously has demonstrated under atmospheric pressure conditions. It is prophesied that NICE-AAS could provide such high detection sensitivity that the instrumentation should not, by itself, be the limiting factor of an assessment of elemental abundance; the accuracy of an assessment would then instead be limited by concomitant species, e.g. originating from the handling procedures of the sample or the environment.
  •  
6.
  • Hausmaninger, Thomas, 1987-, et al. (författare)
  • Doppler-broadened mid-infrared NICE-OHMS system based on an optical parametric oscillator
  • 2016
  • Ingår i: Laser Applications to Chemical, Security and Environmental Analysis. - : Optica Publishing Group (formerly OSA). - 9781943580156
  • Konferensbidrag (refereegranskat)abstract
    • An OPO-based NICE-OHMS instrument for trace gas detection addressing fundamental vibration transitions in the mid-IR (3.2-3.9 µm) range has been developed. It shows a detection sensitivity for CH4 of 2.4×10−10cm−1Hz−1∕2 (corresponding to low ppt concentrations).
  •  
7.
  • Hausmaninger, Thomas, 1987-, et al. (författare)
  • Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition – II : experimental verification
  • 2016
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier. - 0022-4073 .- 1879-1352. ; 168, s. 245-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Doppler-broadened (Db) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is normally described by an expression, here termed the conventional (CONV) description, that is restricted to the conventional cavity-limited weak absorption condition (CCLWA), i.e. when the single pass absorbance is significantly smaller than the empty cavity losses, i.e. when α0L<<π/F. To describe NICE-OHMS signals beyond this limit two simplified extended descriptions (termed the extended locking and extended transmission description, ELET, and the extended locking and full transmission description, ELFT), which are assumed to be valid under the relaxed cavity-limited weak absorption condition (RCLWA), i.e. when α0L<π/Fα0L<π/F, and a full description (denoted FULL), presumed to be valid also when the α0L<π/Fα0L<π/F condition does not hold, have recently been derived in an accompanying work (Ma W, et al. Doppler-broadened NICE-OHMS beyond the cavity-limited weak absorption condition - I. Theoretical Description. J Quant Spectrosc Radiat Transfer, 2015, http://dx.doi.org/10.1016/j.jqsrt.2015.09.007, this issue). The present work constitutes an experimental verification and assessment of the validity of these, performed in the Doppler limit for a set of Fα0L/πFα0L/π values (up to 3.5); it is shown under which conditions the various descriptions are valid. It is concluded that for samples with Fα0L/πFα0L/π up to 0.01, all descriptions replicate the data well. It is shown that the CONV description is adequate and provides accurate assessments of the signal strength (and thereby the analyte concentration) up to Fα0L/πFα0L/π of around 0.1, while the ELET is accurate for Fα0L/πFα0L/π up to around 0.3. The ELFT description mimics the Db NICE-OHMS signal well for Fα0L/πFα0L/π up to around unity, while the FULL description is adequate for all Fα0L/πFα0L/π values investigated. Access to these descriptions both increases considerably the dynamic range of the technique and facilitates calibration using certified reference gases, which thereby significantly broadens the applicability of the Db NICE-OHMS technique.
  •  
8.
  •  
9.
  • Hausmaninger, Thomas, 1987- (författare)
  • Mid- and near-infrared NICE-OHMS : techniques for ultra-sensitive detection of molecules in gas phase
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is a technique for ultra-sensitive detection of molecular absorption and dispersion. For highest performance, the technique combines cavity enhancement (CE) with frequency modulation (FM); while the former increases the effective interaction length between the light and the analyte by several orders of magnitudes, the latter removes the in-coupling of 1/f noise and makes the signals background free. The combination of CE and FM also gives the technique an immunity to amplitude noise caused by the jitter of the laser frequency relative to the cavity resonance frequencies. All these properties make the technique suitable for ultra sensitive trace gas detection in the sub-parts-per-trillion (ppt) range. The aim of this thesis is to improve the performance of the NICE-OHMS technique and to increase its range of applications.The work in this thesis can be divided into three areas:Firstly, a mid-infrared (MIR)-NICE-OHMS instrumentation was developed. In a first realization an unprecedented white-noise equivalent absorption limit for Doppler broadened (Db) detection in the MIR of 3×10-9 cm-1Hz-1/2was demonstrated. This was subsequently improved to 2.4×10-10 cm-1Hz-1/2allowing for detection methane and its two main isotopologues (CH3D and 13CH4) at their natural abundance.Secondly, further development of an existing near-infrared NICE-OHMS system was performed. This resulted in an improved longtime stability and the first shot-noise limited NICE-OHMS system for Db detection with a noise equivalent absorption limit of 2.3×10-14 cm-1detected over 200 s. Thirdly, models and theoretical descriptions of NICE-OHMS signals under strong absorption conditions and from methane under high laser power were developed. It was experimentally verified that the models allow for a more accurate evaluation of NICE-OHMS signals under a wide range of conditions.
  •  
10.
  • Hausmaninger, Thomas, 1987-, et al. (författare)
  • Model for molecular absorption spectroscopy in the 1-100 Torr range in the presence of vibrational depletion - Applied to CH4 in N2 and dry air
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • When molecules whose collision induced vibrational decay rates are small are probed by molecular absorption spectroscopic (MAS) techniques the absorption signal can, under certain conditions, be reduced and distorted. The reason has been attributed to the fact that a substantial fraction of the molecules in the interaction region will reside in excited vibrational states, which leads to a depletion of the vibrational ground state. One type of molecule in which this can take place is methane. A model for this phenomenon, based on CH4 in trace concentrations in either N2 or dry air in a cylindrical gas cell, detected by mid-infrared light in the 1 - 100 Torr pressure range, is presented. Due to a fast collisional coupling between various rotational states and velocity groups we suggest that depletion in MAS can be modeled adequately by a simple three-level system to which the transport of molecules in the system is coupled as diffusion according to Fick's law, applied to each level individually. The model is verified in a separate work [Hausmaninger T et al., J Quant Spectrosc Radiat Tr. 2017;205:59-70] with good agreement. It predicts that depletion has a strong pressure dependence in the 1 - 30 Torr range, that it is significantly more pronounced in N2 than in air, and that considerable degrees of depletion can be obtained for mW powers of light (> 10% for powers > 20 mW). The findings indicate that, unless precautions are taken, depletion can adversely affect quantitative assessments performed by MAS. Means of how to reduce depletion are given.
  •  
11.
  • Johansson, Alexandra C., et al. (författare)
  • Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb
  • 2018
  • Ingår i: Optics Express. - : Optical Society of America. - 1094-4087. ; 26:16, s. 20633-20648
  • Tidskriftsartikel (refereegranskat)abstract
    • We present broadband cavity-enhanced complex refractive index spectroscopy (CE-CRIS), a technique for calibration-free determination of the complex refractive index of entire molecular bands via direct measurement of transmission modes of a Fabry-Perot cavity filled with the sample. The measurement of the cavity transmission spectrum is done using an optical frequency comb and a mechanical Fourier transform spectrometer with sub-nominal resolution. Molecular absorption and dispersion spectra (corresponding to the imaginary and real parts of the refractive index) are obtained from the cavity mode broadening and shift retrieved from fits of Lorentzian profiles to the individual cavity modes. This method is calibration-free because the mode broadening and shift are independent of the cavity parameters such as the length and mirror reflectivity. In this first demonstration of broadband CE-CRIS we measure simultaneously the absorption and dispersion spectra of three combination bands of CO2 in the range between 1525 nm and 1620 nm and achieve good agreement with theoretical models. This opens up for precision spectroscopy of the complex refractive index of several molecular bands simultaneously. 
  •  
12.
  •  
13.
  • Silander, Isak, 1980-, et al. (författare)
  • Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 4 x 10-13 cm-1 Hz-1/2 : implementation of a 50,000 finesse cavity
  • 2015
  • Ingår i: Optics Letters. - : Optical Society of America. - 0146-9592 .- 1539-4794. ; 40:9, s. 2004-2007
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the realization of a Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) instrumentation based on a high-finesse (50,000) cavity with a detection sensitivity of 4 x 10(-13) cm(-1) Hz(-1/2). For the P-e(11) transition targeted at 1.5316 mu m, this corresponds to a C2H2 concentration of 240 ppq (parts-per-quadrillion) detected at 100 Torr. The setup was originally affected by recurrent dips in the cavity transmission, which were attributed to excitation of high-order transverse mode by scattering from the mirrors. The effect of these was reduced by insertion of a small pinhole in the cavity.
  •  
14.
  • Silander, Isak, 1980-, et al. (författare)
  • Gas equilibration gas modulation refractometry for assessment of pressure with sub-ppm precision
  • 2019
  • Ingår i: Journal of Vacuum Science and Technology B. - : AVS Science and Technology Society. - 2166-2746 .- 2166-2754. ; 37:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas modulation refractometry (GAMOR) is a methodology that, by performing repeated reference assessments with the measurement cavity being evacuated while the reference cavity is held at a constant pressure, can mitigate drifts in dual Fabry-Perot cavity based refractometry. A novel realization of GAMOR, referred to as gas equilibration GAMOR, that outperforms the original realization of GAMOR, here referred to as single cavity modulated GAMOR (SCM-GAMOR), is presented. In this, the reference measurements are carried out by equalizing the pressures in the two cavities, whereby the time it takes to reach adequate conditions for the reference measurements has been reduced. This implies that a larger fraction of the measurement cycle can be devoted to data acquisition, which reduces white noise and improves on its short-term characteristics. The presented realization also encompasses a new cavity design with improved temperature stabilization and assessment. This has contributed to improved long-term characteristics of the GAMOR methodology. The system was characterized with respect to a dead weight pressure balance. It was found that the system shows a significantly improved precision with respect to SCM-GAMOR for all integration times. For a pressure of 4303 Pa, it can provide a response for short integration times (up to 10 min) of 1.5 mPa (cycle)1/2, while for longer integration times (up to 18 h), it shows an integration time-independent Allan deviation of 1 mPa (corresponding to a precision, defined as twice the Allan deviation, of 0.5 ppm), exceeding the original SCM-GAMOR system by a factor of 2 and 8, respectively. When used for low pressures, it can provide a precision in the sub-mPa region; for the case with an evacuated measurement cavity, the system provided, for up to 40 measurement cycles (ca. 1.5 h), a white noise of 0.7 mPa (cycle)1/2, and a minimum Allan deviation of 0.15 mPa. It shows a purely linear response in the 2.8-10.1 kPa range. This implies that the system can be used for the transfer of calibration over large pressure ranges with exceptional low uncertainty. © 2019 Author(s).
  •  
15.
  • Silander, Isak, 1980-, et al. (författare)
  • Gas modulation refractometry for high-precision assessment of pressure under nonerature-stabilized conditions
  • 2018
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors report on the realization of a novel methodology for refractometry - GAs modulation refractometry (GAMOR) - that decreases the influence of drifts in Fabry Perot cavity refractometry. The instrumentation is based on a dual Fabry-Perot cavity refractometer in which the beat frequency between the light fields locked to two different cavities, one measurement and one reference cavity, is measured. The GAMOR methodology comprises a process in which the measurement cavity sequentially is filled and evacuated while the reference cavity is constantly evacuated. By performing beat frequency measurements both before and after the finite-pressure measurement, zero point references are periodically created. This opens up for high precision refractometry under nontemperature-stabilized conditions. A first version of an instrumentation based on the GAMOR methodology has been realized and its basic performance has been scrutinized. The refractometer consists of a Zerodur cavity-block and tunable narrow linewidth fiber lasers operating within the C34 communication channel (i.e., around 1.55 μm) at which there are a multitude of fiber coupled off-the-shelf optical, electro-optic, and acousto-optic components. The system is fully computer controlled, which implies it can perform unattended gas assessments over any foreseeable length of time. When applied to a system with no active temperature stabilization, the GAMOR methodology has demonstrated a 3 orders of magnitude improvement of the precision with respect to conventional static detection. When referenced to a dead weight pressure scale the instrumentation has demonstrated assessment of pressures in the kilo-Pascal range (4303 and 7226 Pa) limited by white noise with standard deviations in the 3.2 N - 1 / 2 - 3.5 N - 1 / 2 mPa range, where N is the number of measurement cycles (each being 100 s long). For short measurement times (up to around 103 s), the system exhibits a (1 σ) total relative precision of 0.7 (0.5) ppm for assessment of pressures in the 4 kPa region and 0.5 (0.4) ppm for pressures around 7 kPa, where the numbers in parentheses represent the part of the total noise that has been attributed to the refractometer. As long as the measurement procedure is performed over short time scales, the inherent properties of the GAMOR methodology allow for high precision assessments by the use of instrumentation that is not actively temperature stabilized or systems that are affected by outgassing or leaks. They also open up for a variety of applications within metrology; e.g., transfer of calibration and characterization of pressure gauges, including piston gauges. 
  •  
16.
  •  
17.
  • Zhao, Gang, et al. (författare)
  • High-resolution trace gas detection by sub-Doppler noise-immune cavity-enhanced optical heterodyne molecular spectrometry : application to detection of acetylene in human breath
  • 2019
  • Ingår i: Optics Express. - : Optical Society of America. - 1094-4087. ; 27:13, s. 17940-17953
  • Tidskriftsartikel (refereegranskat)abstract
    • A sensitive high-resolution sub-Doppler detecting spectrometer, based on noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS), for trace gas detection of species whose transitions have severe spectral overlap with abundant concomitant species is presented. It is designed around a NICE-OHMS instrumentation utilizing balanced detection that provides shot-noise limited Doppler-broadened (Db) detection. By synchronous dithering the positions of the two cavity mirrors, the effect of residual etalons between the cavity and other surfaces in the system could be reduced. An Allan deviation of the absorption coefficient of 2.2 × 10-13 cm-1 at 60 s, which, for the targeted transition in C2H2, corresponds to a 3σ detection sensitivity of 130 ppt, is demonstrated. It is shown that despite significant spectral interference from CO2 at the targeted transition, which precludes Db detection of C2H2, acetylene could be detected in exhaled breath of healthy smokers.
  •  
18.
  • Zhao, Gang, et al. (författare)
  • High resolution ultra-sensitive trace gas detection by use of cavity-position-modulated sub-Doppler NICE-OHMS - Application to detection of acetylene in human breath
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A sensitive high resolution spectrometer for trace gas detection of species whose transitions have severe spectral overlap with abundant concomitant species by sub-Doppler (sD) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is presented. The setup is based on a NICE-OHMS instrumentation utilizing balanced detection that provides shot-noise limited Doppler-broadened (Db) detection. An additional layer of modulation is added to reduce the influence of narrow etalons and improve the sensitivity for sD detection. By dithering synchronously the positions of the two cavity mirrors, the effect of residual etalons between one of the cavity mirrors and another surface in the system could be reduced without affecting the frequencies of the cavity mode. This reduced the drifts in the system, allowing for an Allan deviation of the absorption coefficient of 2.2×10−13 cm−1 for an integration time of 60 s, which, for the targeted C2H2 transition at 6518.4858 cm−1, corresponds to a 3σ detection sensitivity of 130 ppt. Sub-Doppler trace gas detection is demonstrated by measuring ppb levels of C2H2 in the exhaled breath of smokers. A procedure was worked out for simultaneous detection of CO2, based on the Db response. It is shown that despite significant spectral interference from CO2, which precludes Db detection of C2H2 in breath, acetylene could be detected in breath from smokers with good spectral resolution by the use of sD NICE-OHMS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy