SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Healey Sean P.) "

Sökning: WFRF:(Healey Sean P.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Duncanson, Laura, et al. (författare)
  • Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
  • 2022
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 270
  • Tidskriftsartikel (refereegranskat)abstract
    • NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
  •  
2.
  • Saarela, Svetlana, et al. (författare)
  • Comparing frameworks for biomass prediction for the Global Ecosystem Dynamics Investigation
  • 2022
  • Ingår i: Remote Sensing of Environment. - : Elsevier. - 0034-4257 .- 1879-0704. ; 278
  • Tidskriftsartikel (refereegranskat)abstract
    • NASA's Global Ecosystem Dynamics Investigation (GEDI) mission offers data for temperate and pan-tropical estimates of aboveground forest biomass (AGB). The spaceborne, full-waveform LiDAR from GEDI provides sample footprints of canopy structure, expected to cover about 4% of the land area following two years of operation. Several options are available for estimating AGB at different geographical scales. Using GEDI sample data alone, gridded biomass predictions are based on hybrid inference which correctly propagates errors due to the modeling and accounts for sampling variability, but this method requires at least two GEDI tracks in the area of interest. However, there are significant gaps in GEDI coverage and in some areas of interest GEDI data may need to be combined with other wall-to-wall remotely sensed (RS) data, such as those from multispectral or SAR sensors. In these cases, we may employ hierarchical model-based (HMB) inference that correctly considers the additional model errors that result from relating GEDI data to the wall-to-wall data. Where predictions are possible from both hybrid and HMB inference the question arises which framework to choose, and under what circumstances? In this paper, we make progress towards answering these questions by comparing the performance of the two prediction frameworks under conditions relevant for the GEDI mission. Conventional model-based (MB) inference with wall-to-wall TanDEM-X data was applied as a baseline prediction framework, which does not involve GEDI data at all. An important feature of the study was the comparison of AGB predictors in terms of both standard deviation (SD: the square root of variance) and root mean square error (RMSE: the square root of mean square error – MSE). Since, in model-based inference, the true AGB in an area of interest is a random variable, comparisons of the performance of prediction frameworks should preferably be made in terms of their RMSEs. However, in practice only the SD can be estimated based on empirical survey data, and thus it is important also to study whether or not the difference between the two uncertainty measures is small or large under conditions relevant for the GEDI mission. Our main findings were that: (i) hybrid and HMB prediction typically resulted in smaller RMSEs than conventional MB prediction although the difference between the three frameworks in terms of SD often was small; (ii) in most cases the difference between hybrid and HMB inference was small in terms of both RMSE and SD; (iii) the RMSEs for all frameworks was substantially larger than the SDs in small study areas whereas the two uncertainty measures were similar in large study areas, and; (iv) spatial autocorrelation of model residual errors had a large effect on the RMSEs of AGB predictors, especially in small study areas. We conclude that hybrid inference is suitable in most GEDI applications for AGB assessment, due to its simplicity compared to HMB inference. However, where GEDI data are sparse HMB inference should be preferred.
  •  
3.
  • Ståhl, Göran, et al. (författare)
  • Why ecosystem characteristics predicted from remotely sensed data are unbiased and biased at the same time – and how this affects applications
  • 2024
  • Ingår i: Forest Ecosystems. - : Elsevier. - 2095-6355 .- 2197-5620. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Remotely sensed data are frequently used for predicting and mapping ecosystem characteristics, and spatially explicit wall-to-wall information is sometimes proposed as the best possible source of information for decision-making. However, wall-to-wall information typically relies on model-based prediction, and several features of model-based prediction should be understood before extensively relying on this type of information. One such feature is that model-based predictors can be considered both unbiased and biased at the same time, which has important implications in several areas of application. In this discussion paper, we first describe the conventional model-unbiasedness paradigm that underpins most prediction techniques using remotely sensed (or other) auxiliary data. From this point of view, model-based predictors are typically unbiased. Secondly, we show that for specific domains, identified based on their true values, the same model-based predictors can be considered biased, and sometimes severely so.We suggest distinguishing between conventional model-bias, defined in the statistical literature as the difference between the expected value of a predictor and the expected value of the quantity being predicted, and design-bias of model-based estimators, defined as the difference between the expected value of a model-based estimator and the true value of the quantity being predicted. We show that model-based estimators (or predictors) are typically design-biased, and that there is a trend in the design-bias from overestimating small true values to underestimating large true values. Further, we give examples of applications where this is important to acknowledge and to potentially make adjustments to correct for the design-bias trend. We argue that relying entirely on conventional model-unbiasedness may lead to mistakes in several areas of application that use predictions from remotely sensed data.
  •  
4.
  • Woolway, R. Iestyn, et al. (författare)
  • Geographic and temporal variations in turbulent heat loss from lakes : A global analysis across 45 lakes
  • 2018
  • Ingår i: Limnology and Oceanography. - : WILEY. - 0024-3590 .- 1939-5590. ; 63:6, s. 2436-2449
  • Tidskriftsartikel (refereegranskat)abstract
    • Heat fluxes at the lake surface play an integral part in determining the energy budget and thermal structure in lakes, including regulating how lakes respond to climate change. We explore patterns in turbulent heat fluxes, which vary across temporal and spatial scales, using in situ high-frequency monitoring data from 45 globally distributed lakes. Our analysis demonstrates that some of the lakes studied follow a marked seasonal cycle in their turbulent surface fluxes and that turbulent heat loss is highest in larger lakes and those situated at low latitude. The Bowen ratio, which is the ratio of mean sensible to mean latent heat fluxes, is smaller at low latitudes and, in turn, the relative contribution of evaporative to total turbulent heat loss increases toward the tropics. Latent heat transfer ranged from similar to 60% to > 90% of total turbulent heat loss in the examined lakes. The Bowen ratio ranged from 0.04 to 0.69 and correlated significantly with latitude. The relative contributions to total turbulent heat loss therefore differ among lakes, and these contributions are influenced greatly by lake location. Our findings have implications for understanding the role of lakes in the climate system, effects on the lake water balance, and temperature-dependent processes in lakes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy