SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heimburger Boavida L.) "

Sökning: WFRF:(Heimburger Boavida L.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charette, M. A., et al. (författare)
  • The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 125:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and similar to 25-50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 +/- 0.4 Sv (10(6) m(3)s(-1)). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. Plain Language Summary A major feature of the Arctic Ocean circulation is the Transpolar Drift (TPD), a surface current that carries ice and continental shelf-derived materials from Siberia across the North Pole to the North Atlantic Ocean. In 2015, an international team of oceanographers conducted a survey of trace elements in the Arctic Ocean, traversing the TPD. Near the North Pole, they observed much higher concentrations of trace elements in surface waters than in regions on either side of the current. These trace elements originated from land, and their journey across the Arctic Ocean is made possible by chemical reactions with dissolved organic matter that originates mainly in Arctic rivers. This study reveals the importance of rivers and shelf processes combined with strong ocean currents in supplying trace elements to the central Arctic Ocean and onward to the Atlantic. These trace element inputs are expected to increase as a result of permafrost thawing and increased river runoff in the Arctic, which is warming at a rate much faster than anywhere else on Earth. Since many of the trace elements are essential building blocks for ocean life, these processes could lead to significant changes in the marine ecosystems and fisheries of the Arctic Ocean.
  •  
2.
  • Charette, M, et al. (författare)
  • The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 125, s. 1-34
  • Tidskriftsartikel (refereegranskat)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the openocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv(106m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologicc ycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
  •  
3.
  • Dastoor, Ashu, et al. (författare)
  • Arctic mercury cycling
  • 2022
  • Ingår i: Nature Reviews Earth & Environment. - : Springer Nature. - 2662-138X. ; 3:4, s. 270-286
  • Forskningsöversikt (refereegranskat)abstract
    • Anthropogenic mercury (Hg) emissions have driven marked increases in Arctic Hg levels,which are now being impacted by regional warming, with uncertain ecological consequences. This Review presents a comprehensive assessment of the present-day total Hg mass balance in the Arctic. Over 98% of atmospheric Hg is emitted outside the region and is transported to the Arctic via long-range air and ocean transport. Around two thirds of this Hg is deposited in terrestrial ecosystems, where it predominantly accumulates in soils via vegetation uptake. Rivers and coastal erosion transfer about 80 Mg year−1 of terrestrial Hg to the Arctic Ocean, in approximate balance with modelled net terrestrial Hg deposition in the region. The revised Arctic Ocean Hg mass balance suggests net atmospheric Hg deposition to the ocean and that Hg burial in inner-shelf sediments is underestimated (up to >100%), needing seasonal observations of sediment-oceanHg exchange. Terrestrial Hg mobilization pathways from soils and the cryosphere (permafrost, ice, snow and glaciers) remain uncertain. Improved soil, snowpack and glacial Hg inventories, transfer mechanisms of riverine Hg releases under accelerated glacier and soil thaw, coupled atmosphere– terrestrial modelling and monitoring of Hg in sensitive ecosystems such as fjords can help toanticipate impacts on downstream Arctic ecosystems.
  •  
4.
  •  
5.
  • Jonsson, Sofi, et al. (författare)
  • Arctic methylmercury cycling
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 850
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
  •  
6.
  • Schartup, Amina T., et al. (författare)
  • Influence of the Arctic Sea-Ice Regime Shift on Sea-Ice MethylatedMercury Trends
  • 2020
  • Ingår i: Environmental Science & Technology Letters. - : American Chemical Society (ACS). - 2328-8930 .- 2328-8930.
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic sea ice regulates the air−sea exchange of volatile mercury (Hg) species like dimethylmercury (DMHg) or elemental Hg and is known to host Hg methylating microbes that produce neurotoxic and biomagnifying monomethylmercury (MMHg). Arctic sea ice accounts for 57% of the total primary production in the Arctic Ocean, suggesting that it could be the main source of MMHg to arctic food webs. Despite this, little is known about Hg concentrations and speciation in arctic sea ice. Here, we report Hg species and show the importance of sea-ice composition on sea-ice methylmercury (MeHg = DMHg + MMHg) budgets. We propose that the shift from older sea ice (lower MeHg) to younger sea ice (higher MeHg) resulted in a 40% increase in MeHg (per square meter of sea ice) since 1979 despite a 45% decline in the total sea-ice volume. Approximately 30% of the MeHg sea-ice budget is DMHg, which means that when the seaice melts in the summer it could contribute 0.03−2.7 pmol of DMHg m−2 day−1 to the atmosphere, which is comparable to diffusion from water (0.48−2.8 pmol of DMHg m−2 day−1). This study shows that the MeHg content of rapidly shrinking arctic sea ice and exposure of sea-ice biota may not be declining as previously thought.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy