SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henderson Pamela) "

Sökning: WFRF:(Henderson Pamela)

  • Resultat 1-50 av 63
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Hop, Paul J., et al. (författare)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
10.
  •  
11.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
22.
  •  
23.
  •  
24.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Alipour, Yousef, et al. (författare)
  • Effect of temperature on corrosion of furnace walls in a waste wood fired boiler
  • 2015
  • Ingår i: Materials at High Temperature. - 0960-3409 .- 1878-6413. ; 32:1-2, s. 188-196
  • Tidskriftsartikel (refereegranskat)abstract
    • One way of reducing the furnace wall corrosion is to lower the temperature of the wall by reducing the boiler pressure. To test this, four coupons of 16Mo3 were exposed in the furnace wall of a waste wood fired boiler for 1075 h. The temperatures of the samples were individually controlled in the range 280-410 degrees C. The corrosion rates and corrosion mechanism were investigated. The deposits were analysed by XRD and SEM/EDS. The corrosion fronts were studied by focused ion beam milling (FIB)/EDS. The environment was modelled by Thermo-Calc. The amount of potassium and chlorine in the deposit decreased with decreasing temperature. The FIB sections showed a distinctive iron chloride layer at the corrosion front, with an outer layer of iron oxide. The corrosion rate decreased with decreasing metal temperature, but the boiler pressure needs to be reduced to a low level to achieve this, which is not beneficial for the electrical efficiency and therefore not a viable way of reducing corrosion.
  •  
29.
  • Alipour, Yousef, 1979- (författare)
  • Furnace Wall Corrosion in a Wood-fired Boiler
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The use of renewable wood-based fuel has been increasing in the last few decades because it is said to be carbon neutral. However, wood-based fuel, and especially used wood (also known as recycled wood or waste wood), is more corrosive than virgin wood (forest fuel), because of higher amounts of chlorine and heavy metals. These elements increase the corrosion problems at the furnace walls where the oxygen level is low.Corrosion mechanisms are usually investigated at the superheaters where the temperature of the material and the oxygen level is higher than at the furnace walls.  Much less work has been performed on furnace wall corrosion in wood or used wood fired boilers, which is the reason for this project.    Tests are also mostly performed under simplified conditions in laboratories, making the results easier to interpret.  In power plants the interpretation is more complicated. Difficulties in the study of corrosion processes are caused by several factors such as deposit composition, flue gas composition, boiler design, and combustion characteristics and so on. Therefore, the laboratory tests should be a complement to the field test ones. This doctoral project involved in-situ testing at the furnace wall of power boilers and may thus contribute to fill the gap.The base material for furnace walls is a low alloy steel, usually 16Mo3, and the tubes may be coated or uncoated. Therefore tests were performed both on 16Mo3 and more highly alloyed materials suitable for protective coatings.Different types of samples exposed in used-wood fired boilers were analysed by different techniques such as LOM (light optical microscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), WDS (wavelength dispersive spectroscopy), FIB (focused ion beam) and GD-OES (glow discharge optical emission spectroscopy). The corrosion rate was measured. The environment was also thermodynamically modelled by TC (Thermo-Calc ®).The results showed that 16Mo3 in the furnace wall region is attacked by HCl, leading to the formation of iron chloride and a simultaneous oxidation of the iron chloride. The iron chloride layer appeared to reach a steady state thickness.  Long term exposures showed that A 625 (nickel chromium alloy) and Kanthal APMT (iron-chromium-aluminium alloy) had the lowest corrosion rate (about 25-30% of the rate for 16Mo3), closely followed by 310S (stainless steel), making these alloys suitable for coating materials. It was found that the different alloys were attacked by different species, although they were exposed in the boiler at the same time in the same place. The dominant corrosion process in the A 625 samples seemed to be by a potassium-lead combination, while lead did not attack the APMT samples. Potassium attacked the alumina layer in the APMT samples, leading to the formation of a low-protective aluminate and chlorine was found to attack the base material.  The results showed that stainless steels are attacked by both mechanisms (Cl- induced attack and K-Pb combination).Decreasing the temperature of the furnace walls of a waste wood fired boiler could decrease the corrosion rate of 16Mo3. However, this low corrosion rate corresponds to a low final steam pressure of the power plant, which in not beneficial for the electrical efficiency.The short term testing results showed that co-firing of sewage sludge with used wood can lead to a reduction in the deposition of K and Cl on the furnace wall during short term testing. This led to corrosion reduction of furnace wall materials and coatings. The alkali chlorides could react with the aluminosilicates in the sludge and be converted to alkali silicates. The chromia layer in A 625 and alumina in APMT were maintained with the addition of sludge. 
  •  
30.
  • Alipour, Yousef (författare)
  • High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel.A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are made of ferritic low-alloyed steels, due to their low price, low stress corrosion cracking risk, high heat transfer properties and low thermal expansion. However, ferritic low alloy steels corrode quickly when burning waste wood in a low NOx environment (i.e. an environment with low oxygen levels to limit the formation of NOx). Apart from pure oxidation two important forms of corrosion mechanisms are thought to occur in waste environments: chlorine corrosion and alkali corrosion.Although there is a great interest from plant owners to reduce the costs associated with furnace wall corrosion very little has been reported on wall corrosion in biomass boilers. Also corrosion mechanisms on furnace walls are usually investigated in laboratories, where interpretation of the results is easier. In power plants the interpretation is more complicated. Difficulties in the study of corrosion mechanisms are caused by several factors such as deposit composition, flue gas flow, boiler design, combustion characteristics and flue gas composition. Therefore, the corrosion varies from plant to plant and the laboratory experiments should be complemented with field tests. The present project may thus contribute to fill the power plant corrosion research gap.In this work, different kinds of samples (wall deposits, test panel tubes and corrosion probes) from Vattenfall’s Heat and Power plant in Nyköping were analysed. Coated and uncoated samples with different alloys and different times of exposure were studied by scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), X-ray diffraction (XRD) and light optical microscopy (LOM). The corrosive environment was also simulated by Thermo-Calc software.The results showed that a nickel alloy coating can dramatically reduce the corrosion rate. The corrosion rate of the low alloy steel tubes, steel 16Mo3, was linear and the oxide scale non-protective, but the corrosion rate of the nickel-based alloy was probably parabolic and the oxide much more protective. The nickel alloy and stainless steels showed good corrosion protection behavior in the boiler. This indicates that stainless steels could be a good (and less expensive) alternative to nickel-based alloys for protecting furnace walls.The nickel alloy coated tubes (and probe samples) were attacked by a potassium-lead combination leading to the formation of non-protective potassium lead chromate. The low alloy steel tubes corroded by chloride attack. Stainless steels were attacked by a combination of chlorides and potassium-lead.The Thermo-Calc modelling showed chlorine gas exists at extremely low levels (less than 0.1 ppm) at the tube surface; instead the hydrated form is thermodynamically favoured, i.e. gaseous hydrogen chloride. Consequently chlorine can attack low alloy steels by gaseous hydrogen chloride rather than chlorine gas as previously proposed. This is a smaller molecule than chlorine which could easily diffuse through a defect oxide of the type formed on the steel.
  •  
31.
  •  
32.
  • Alipour, Yousef, 1979-, et al. (författare)
  • The analysis of furnace wall deposits in a low-NOx waste wood-fired bubbling fluidised bed boiler
  • 2012
  • Ingår i: VGB PowerTech Journal. - : VGB Power Tech. - 1435-3199. ; 92:12, s. 96-100
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing use is being made of biomass as fuel for electricity production as the price of natural wood continues to rise. Therefore, more use is being made of waste wood (recycled wood). However, waste wood contains more chlorine, zinc and lead, which are believed to increase corrosion rates. Corrosion problems have occurred on the furnace walls of a fluidised bed boiler firing 100 % waste wood under low-NOx conditions. The deposits have been collected and analysed in order to understand the impact of the fuel.
  •  
33.
  • Alipour, Yousef, 1979-, et al. (författare)
  • The effect of a nickel alloy coating on the corrosion of furnace wall tubes in a waste wood fired power plant
  • 2014
  • Ingår i: Materials and corrosion - Werkstoffe und Korrosion. - : Wiley. - 0947-5117 .- 1521-4176. ; 65:2, s. 217-225
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of waste wood as a fuel in power plants is becoming more widespread in Europe, because it is a renewable energy source with a lower cost than forest fuel. However it is more corrosive than coal and corrosion problems have arisen in the furnace wall area of a low NOx heat and power boiler. The furnace walls are made of a low alloy steel which has been coated in some parts with a nickel alloy to reduce corrosion. In this work, furnace tubes coated with a nickel alloy were compared to the uncoated tubes of the low alloy steel 16Mo3 after 3 years of exposure in the boiler. The nickel alloy coating and uncoated material were also compared with more controlled testing on a corrosion probe lasting for about 6 weeks. The corrosion rates were measured and the samples were chemically analysed by SEM/EDS/WDS and XRD methods. The corrosive environment was also modelled with Thermo-Calc software. The corrosion rates measured from the probe and tube samples of 16Mo3 agreed well with each other, implying linear corrosion rates. The results also showed that the use of nickel alloy coatings changes the corrosion mechanism, which leads to a dramatic reduction in the corrosion rate. The results are discussed in terms of the corrosion mechanisms and thermodynamic stability of the corrosion products.
  •  
34.
  •  
35.
  • Alipour, Yousef, et al. (författare)
  • The effect of co-firing sewage sludge with used wood on the corrosion of an FeCrAl alloy and a nickel-based alloy in the furnace region
  • 2015
  • Ingår i: Fuel processing technology. - : Elsevier. - 0378-3820 .- 1873-7188. ; 138, s. 805-813
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of digested sewage sludge as a fuel additive to reduce corrosion of furnace walls has been studied. The nickel base alloy Alloy 625 and the iron-chromium-aluminium alloy Kanthal APMT™ were exposed for 14.25. h at the furnace wall in a power boiler burning 100% used (also known as waste or recycled) wood. The test was then repeated with the addition of sewage sludge to the waste wood. The samples were chemically analysed and thermodynamically modelled and the corrosion mechanisms were investigated. The results showed that the co-firing of sewage sludge with recycled wood leads to a reduction in the corrosion. Attack by a potassium-lead combination appeared to be the main corrosion mechanism in Alloy 625 during waste wood combustion, while attack by alkali chloride was found to be dominant in APMT alloy.
  •  
36.
  • Chapman, I. T., et al. (författare)
  • Overview of MAST results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mega Ampere Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key results in understanding and optimizing H-mode confinement, operating with smaller edge localized modes (ELMs), predicting and handling plasma exhaust and tailoring auxiliary current drive. In all cases, the high-resolution diagnostic capability on MAST is complemented by sophisticated numerical modelling to facilitate a deeper understanding. Mitigation of ELMs with resonant magnetic perturbations (RMPs) with toroidal mode number n(RMP) = 2, 3, 4, 6 has been demonstrated: at high and low collisionality; for the first ELM following the transition to high confinement operation; during the current ramp-up; and with rotating n(RMP) = 3 RMPs. n(RMP) = 4, 6 fields cause less rotation braking whilst the power to access H-mode is less with n(RMP) = 4 than n(RMP) = 3, 6. Refuelling with gas or pellets gives plasmas with mitigated ELMs and reduced peak heat flux at the same time as achieving good confinement. A synergy exists between pellet fuelling and RMPs, since mitigated ELMs remove fewer particles. Inter-ELM instabilities observed with Doppler backscattering are consistent with gyrokinetic simulations of micro-tearing modes in the pedestal. Meanwhile, ELM precursors have been strikingly observed with beam emission spectroscopy (BES) measurements. A scan in beta at the L-H transition shows that pedestal height scales strongly with core pressure. Gyro-Bohm normalized turbulent ion heat flux (as estimated from the BES data) is observed to decrease with increasing tilt of the turbulent eddies. Fast ion redistribution by energetic particle modes depends on density, and access to a quiescent domain with 'classical' fast ion transport is found above a critical density. Highly efficient electron Bernstein wave current drive (1 A W-1) has been achieved in solenoid-free start-up. A new proton detector has characterized escaping fusion products. Langmuir probes and a high-speed camera suggest filaments play a role in particle transport in the private flux region whilst coherence imaging has measured scrape-off layer (SOL) flows. BOUT++ simulations show that fluxes due to filaments are strongly dependent on resistivity and magnetic geometry of the SOL, with higher radial fluxes at higher resistivity. Finally, MAST Upgrade is due to begin operation in 2016 to support ITER preparation and importantly to operate with a Super-X divertor to test extended leg concepts for particle and power exhaust.
  •  
37.
  • Ekström, Madeleine, 1984- (författare)
  • Development of a ferritic ductile cast iron for improved life in exhaust applications
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Due to coming emission legislations, the temperature is expected to increase in heavy-duty diesel engines, specifically in the hot-end of the exhaust system affecting components, such as exhaust- and turbo manifolds. Since the current material in the turbo manifold, a ductile cast iron named SiMo51, is operating close to its limits there is a need for material development in order to maintain a high durability of these components. When designing for increased life, many material properties need to be considered, for example, creep-, corrosion- and fatigue resistance. Among these, the present work focuses on the latter two up to 800°C improving the current material by additions of Cr, for corrosion resistance, and Ni, for mechanical properties. The results show improved high-temperature corrosion resistance in air from 0.5 and 1wt% Cr additions resulting in improved barrier layer at the oxide/metal interface. However, during oxidation in exhaust-gases, which is a much more demanding environment compared to air, such improvement could not be observed. Addition of 1wt% Ni was found to increase the fatigue life up to 250°C, resulting from solution strengthening of the ferritic matrix. However, Ni was also found to increase the oxidation rates, as no continuous SiO2-barrier layers were formed in the presence of Ni. Since none of the tested alloys showed improved material properties in exhaust gases at high temperature, it is suggested that the way of improving performance of exhaust manifolds is to move towards austenitic ductile cast irons or cast stainless steels. One alloy showing good high-temperature oxidation properties in exhaust atmospheres is an austenitic cast stainless steel named HK30. This alloy formed adherent oxide scales during oxidation at 900°C in gas mixtures of 5%O2-10%H2O-85%N2 and 5%CO2-10%H2O-85%N2 and in air. In the two latter atmospheres, compact scales of (Cr, Mn)-spinel and Cr2O3 were formed whereas in the atmosphere containing 5%O2 and 10%H2O, the scales were more porous due to increased Fe-oxide formation. Despite the formation of a protective, i.e. compact and adherent, oxide scale on HK30, exposure to exhaust-gas condensate showed a detrimental effect in form of oxide spallation and metal release. Thus, proving the importance of taking exhaust-gas condensation, which may occur during cold-start or upon cooling of the engine, into account when selecting a new material for exhaust manifolds. 
  •  
38.
  •  
39.
  • Harrison, J.R., et al. (författare)
  • Overview of new MAST physics in anticipation of first results from MAST Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The mega amp spherical tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 ∼ 1.3) with similar poloidal cross-section to other medium-size tokamaks. The physics programme concentrates on addressing key physics issues for the operation of ITER, design of DEMO and future spherical tokamaks by utilising high resolution diagnostic measurements closely coupled with theory and modelling to significantly advance our understanding. An empirical scaling of the energy confinement time that favours higher power, lower collisionality devices is consistent with gyrokinetic modelling of electron scale turbulence. Measurements of ion scale turbulence with beam emission spectroscopy and gyrokinetic modelling in up-down symmetric plasmas find that the symmetry of the turbulence is broken by flow shear. Near the non-linear stability threshold, flow shear tilts the density fluctuation correlation function and skews the fluctuation amplitude distribution. Results from fast particle physics studies include the observation that sawteeth are found to redistribute passing and trapped fast particles injected from neutral beam injectors in equal measure, suggesting that resonances between the m = 1 perturbation and the fast ion orbits may be playing a dominant role in the fast ion transport. Measured D-D fusion products from a neutron camera and a charged fusion product detector are 40% lower than predictions from TRANSP/NUBEAM, highlighting possible deficiencies in the guiding centre approximation. Modelling of fast ion losses in the presence of resonant magnetic perturbations (RMPs) can reproduce trends observed in experiments when the plasma response and charge-exchange losses are accounted for. Measurements with a neutral particle analyser during merging-compression start-up indicate the acceleration of ions and electrons. Transport at the plasma edge has been improved through reciprocating probe measurements that have characterised a geodesic acoustic mode at the edge of an ohmic L-mode plasma and particle-in-cell modelling has improved the interpretation of plasma potential estimates from ball-pen probes. The application of RMPs leads to a reduction in particle confinement in L-mode and H-mode and an increase in the core ionization source. The ejection of secondary filaments following type-I ELMs correlates with interactions with surfaces near the X-point. Simulations of the interaction between pairs of filaments in the scrape-off layer suggest this results in modest changes to their velocity, and in most cases can be treated as moving independently. A stochastic model of scrape-off layer profile formation based on the superposition of non-interacting filaments is in good agreement with measured time-average profiles. Transport in the divertor has been improved through fast camera imaging, indicating the presence of a quiescent region devoid of filament near the X-point, extending from the separatrix to ψ n ∼ 1.02. Simulations of turbulent transport in the divertor show that the angle between the divertor leg on the curvature vector strongly influences transport into the private flux region via the interchange mechanism. Coherence imaging measurements show counter-streaming flows of impurities due to gas puffing increasing the pressure on field lines where the gas is ionised. MAST Upgrade is based on the original MAST device, with substantially improved capabilities to operate with a Super-X divertor to test extended divertor leg concepts. SOLPS-ITER modelling predicts the detachment threshold will be reduced by more than a factor of 2, in terms of upstream density, in the Super-X compared with a conventional configuration and that the radiation front movement is passively stabilised before it reaches the X-point. 1D fluid modelling reveals the key role of momentum and power loss mechanisms in governing detachment onset and evolution. Analytic modelling indicates that long legs placed at large major radius, or equivalently low at the target compared with the X-point are more amenable to external control. With MAST Upgrade experiments expected in 2019, a thorough characterisation of the sources of the intrinsic error field has been carried out and a mitigation strategy developed.
  •  
40.
  • Henderson, Pamela, et al. (författare)
  • A steam loop for materials testing at 600C in a biomass and waste fired boiler : results of corrosion testing
  • 2010
  • Ingår i: 9th Liege conference on Materials for Advanced Power Engineering 2010. - : Forschungszentrum Jülich GMbH. - 9783893366859 ; , s. 1140-1149
  • Konferensbidrag (refereegranskat)abstract
    • A steam loop for corrosion testing was constructed in Esshete 1250 and attached to one of the superheaters in a 100 MWth bubbling fluidised bed (BFB) boiler. The loop raised the final steam temperature to about600°Cat 140 bar.  A number of different test materials were welded into the loop for evaluation at low temperature (500°Csteam) and high temperature (600°Csteam). Their wall thicknesses were measured with a high resolution ultrasonic probe before and after exposure. A number of sections were examined metallographically after exposure. The steam loop was in service for one firing season (about 5500 h) and the fuel mixture was initially a biomass mix co-firing with 15% coal. However halfway though the firing season the coal was replaced with 15% packaging waste containing plastic and aluminium.  The latter mixture (biomass and waste) was highly corrosive and accounted for most of the corrosion.   The alloys with the highest Ni and Cr contents, Haynes230, AC66 and HR11N, showed negligible steam-side corrosion. The 11% chromium steel X20  and the nickel-base alloy HR11N were not tested at the higher steam temperature because of strength considerations. Regarding fireside corrosion at500°Csteam the alloys with the best corrosion resistance were  Haynes 230, HR11N, AC 66 and HR3C followed by Esshete 1250 and  TP347HFG.  The corrosion rate of X20 was unacceptably high and is totally unsuitable for this fuel mix.  At 600°C  Haynes 230 showed the lowest corrosion rates, followed by TP 347 HFG, HR3C, AC66, and  Esshete 1250. Large amounts of internal corrosion were seen.
  •  
41.
  • Henderson, Pamela, et al. (författare)
  • Combating corrosion in biomass and waste-fired plant
  • 2010
  • Ingår i: 9th Liege conference on Materials for Advanced Power engineering 2010. - : Forschungszentrum Jülich GmbH. - 9783893366859 ; , s. 986-999
  • Konferensbidrag (refereegranskat)abstract
    • Many biomass- or waste-fired plants have problems with high temperature corrosion especially if the steam temperature is greater than500°C.  An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest in reducing the costs associated with high temperature corrosion and at the same time there exists a desire to improve the electrical efficiency of a plant by the use of higher steam temperatures.  Assuming that the fuel is well-mixed and that there is good combustion control, there are in addition a number of other measures which can be used to reduce superheater corrosion in biomass and waste fired plants, and these are described in this paper.  These include the use of fuel additives, specifically sulphur-containing ones; design aspects like placing superheaters in less corrosive positions in a boiler, using tube shielding, a wider pitch between the tubes; operational considerations such as more controlled soot-blowing and the use of better materials.
  •  
42.
  • Henderson, Pamela, 1957-, et al. (författare)
  • Corrosion of superheaters at 600C steam in biomass-fired boilers
  • 2011
  • Ingår i: EuroCorr 2011. ; , s. 4656-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • A steam loop for corrosion testing was constructed in stainless steel and attached to one of the superheaters in a power station boiler which ran on a mixture of biomass and waste. The loop raised the final steam temperature to about600°Cat 140 bar and was in service for 5500 h. A number of different test materials were welded into the loop for evaluation. Their wall thicknesses were measured before and after exposure and a number of sections were examined metallographically after exposure to investigate steam-side oxidation and fire-side corrosion.   The alloys with the highest Ni and Cr contents (over 30 and 20 wt% respectively) showed negligible steam-side oxidation. Regarding fireside corrosion a stainless steel containing 18%Cr and 11%Ni exhibited the second lowest corrosion rates, performing much better than all of the higher alloyed steels.  The corrosion rate for this steel was not temperature sensitive and appeared to decrease as the temperature increased.  Large amounts of internal or selective corrosion were seen in all the materials tested at 600°C steam.
  •  
43.
  • Henderson, Pamela (författare)
  • Högtemperaturkorrosion i barkpannor : Del 1
  • 2007
  • Ingår i: Nordisk Papper & Massa. - Stockholm : Conventus Communications AB. - 1652-9995. ; :2, s. 58-59
  • Forskningsöversikt (populärvet., debatt m.m.)abstract
    • Ökad eldning av retur- och avfallsbränslen i barkpannor har medfört att alltfler har fått problem med avlagringar och korrosion. Det finns ett stort intresse att minska kostnader för högtemperaturkorrosion genom att förlänga livslängden och att minska risken för oplanerade stopp. Samtidigt finns det starka drivkrafter att förbättra anläggningarnas elverkningsgrad genom högre ångdata.
  •  
44.
  • Henderson, Pamela (författare)
  • Högtemperaturkorrosion i barkpannor : del 2
  • 2007
  • Ingår i: Nordisk Papper & Massa. - Stockholm : Medact Press AB. - 1652-9995. ; :3/4, s. 83-85
  • Forskningsöversikt (populärvet., debatt m.m.)abstract
    • Ökad eldning av retur- och avfallsbränslen i barkpannor har medfört att alltfler har fått problem med avlagringar och korrosion. Det finns ett stort intresse att minska kostnader för högtemperaturkorrosion genom att förlänga livslängden och att minska risken för oplanerade stopp. Samtidigt finns det starka drivkrafter att förbättra anläggningarnas elverkningsgrad genom högre ångdata.
  •  
45.
  • Henderson, Pamela, et al. (författare)
  • In-situ fireside corrosion testing of superheater materials with coal, wood and straw fuels for conventional and asvanced steam temperatures
  • 2005
  • Ingår i: VGB PowerTech. - Essen, Germany : VGB PowerTech eV. - 1435-3199. ; 84:6, s. 53-59
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in the steam temperature of a power station increases the electrical efficiency of the turbine. This in turn leads to a reduction in the cost of electricity and in environmental emissions produced per unit of electricity generated. However, higher steam temperatures give rise to more aggressive corrosive environments and the choice of material becomes more important. In addition, the aggressiveness of the fuels also depends on their chemical compositions.  As part of a European research programme (COST 522) fireside corrosion tests of superheater and waterwall materials have been performed in-situ in industrial boilers or combustion test facilities, simulating conventional and higher steam temperatures. The fuels used were, straw, wood (logging residues) and coal. Goals were  set at different maximum steam temperatures and lifetimes according to the fuel. The targets were: coal 650°C/100,000 h,  wood 580°C/40,000 h and straw 580°C/20,000 h .A wide range of materials was tested.  An overriding constraint was that the materials must be economically viable and not impose exceptional fabrication requirements. Some materials were tested in a number of combustion environments, allowing useful comparisons to be made. The results showed that for a given superheater alloy, temperature and fuel, the corrosion rate depended on the alloy’s position in a superheater bank. Tubes on the outside, exposed to the flue gas, corroded faster than those positioned deeper in a bank.  Tubes experiencing a greater heat flux will corrode more rapidly. Poorly controlled combustion will also increase corrosion. Straw was much more corrosive than wood (logging residues). The difference in corrosiveness increased with increasing temperature above a metal temperature of about 520°C. The corrosion rates of the alloys tested during wood-firing were only a little higher than those from firing coal with a medium to high chlorine content. Straw and wood are often collectively known as “biomass”, but the corrosion they cause can vary by a factor of 5 or more. No difference could be found in the fireside  corrosion rates of the steels TP 347H and TP 347HFG, when tested under similar conditions. Esshete 1250 also showed similar fireside corrosion rates to347 instraw and wood boilers and at temperatures below 650°Cin coal boilers. Several alloys were identified to resist corrosion in coal-fired plant at metal temperatures of680°C(steam temperatures650°C) and high heat fluxes.  Adequate high temperature creep strength remains more problematic.  At lower heat fluxes (resulting in lower corrosion rates) more candidate alloys exist. It is expected that the goals set can be achieved with the use of suitable alloys in the case of wood, waste and coal. For wood (logging residues) TP347, Esshete 1250 and 50Ni50Cr coatings showed sufficient corrosion resistance at the target temperatures. In the coal case  HR3C fulfills the requirements of strength and corrosion resistance with a high heat flux and  Super 304H and SAVE 25 if the heat flux is low. HR11N and IN671 are suitable for use as claddings on a substrate with the appropriate creep strength. The goal set for straw firing was ambitious, a steam temperature of580°C, and in this case a combination of material, combustion technology and boiler design are needed.
  •  
46.
  • Henderson, Pamela, et al. (författare)
  • Preliminary experience with material testing at the oxyfuel pilot plant at Schwarzepumpe
  • 2010
  • Ingår i: 9th Liege conference on Materials for Advanced Power engineering 2010. - : Forschungszentrum Jülich GmbH. - 9783893366859 ; , s. 1244-1259
  • Konferensbidrag (refereegranskat)abstract
    • Several material related issues may arise from oxyfuel combustion of coal due to the presence of CO2   but also as an effect of the partial recirculation of the flue gas. Two examples are increased corrosion and carburisation which may limit steam data, hence limiting the efficiency.A number of corrosion tests, in both conventional air-firing and oxyfuel mode, have been made in Vattenfalls 30 MW oxyfuel pilot plant located in Schwarze Pumpe, Germany. Internally cooled corrosion probes, equipped with ferritic, austenitic, super austenitic steels as well as Ni-based and FeCrAl alloys, simulating superheaters, economisers and air preheaters were exposed for up to 1500 hrs.The analyses show an indication of higher material wastage in oxyfuel compared to air combustion especially at the lower exposure temperatures. This may be due to increased sulphur concentration in corrosion front, increased heat flux, carburisation or other preciptate formations on austenitic steels and Ni-based alloys.
  •  
47.
  • Henderson, Pamela, et al. (författare)
  • Reducing superheater corrosion in wood-fired boilers
  • 2008
  • Ingår i: Novel approaches to improving high temperature corrosion resistance. - : Woodhead Publishing Limited. ; , s. 428-444
  • Bokkapitel (refereegranskat)abstract
    • In the last few years, there has been a move away from burning fossil fuels through the co-utilisation of biomass and coal and finally to 100% biomass such as wood and waste wood products. Unfortunately, burning of biomass causes widespread fouling of superheater tubes and corrosion can occur rapidly under the sticky alkali chloride deposits. Even at today's maximum steam temperatures of 500 to540°C there are some severe corrosion problems when burning  100% wood-based fuel. It is also desirable to be able to burn other environmental fuels such as straw, demolition wood or other wood-waste products, to reduce production costs and avoid dumping waste at landfill sites. This, however, makes the corrosion and fouling problems even more serious.  A complete set of superheaters for a 100 MW combined heat and power boiler costs in excess of 1 MEuro. The durability of superheaters is thus an important factor in determining the long-term production costs. Unplanned outages due to leaking superheaters are also very expensive. As well as causing corrosion problems, the build-up of deposits reduces the heat uptake to the superheaters which leads to lower efficiency. Consequently, ways are being sought to reduce superheater corrosion.Most biomass fuels have a high content of alkali metals and chlorine, but they contain very little sulphur compared to fossil fuels. Potassium chloride, KCl, is found in the gas phase, condenses on the superheater tubes and forms complex alkali salts with iron and other elements in the steels. These salts have low melting points and are very corrosive. Vattenfall has developed and patented an instrument for in-situ measurement of gaseous alkali chlorides which gives an indication of how corrosive the flue gases are.  This instrument is called an in-situ alkali chloride monitor (IACM).  Vattenfall has also developed and patented a concept with a sulphate containing compound called “ChlorOut” , which is sprayed into the flue gases after combustion is complete, but before the flue gases reach the superheaters, and effectively converts KCl into potassium sulphate, K2SO4.  This compound much less corrosive than KCl.  In the experiments reported here the sulphate used in ChlorOut was ammonium sulphate. This is also used for the reduction of NOx. This study reports on measures taken to reduce superheater corrosion in two fluidised bed boilers burning wood-based fuels, using the ChlorOut additive to control the KCl levels and by using more corrosion-resistant steels.
  •  
48.
  • Henderson, Pamela, et al. (författare)
  • Reducing superheater corrosion in wood-fired boilers
  • 2006
  • Ingår i: Materials and corrosion - Werkstoffe und Korrosion. - : Wiley-VCH Verlagsgesellschaft. - 0947-5117 .- 1521-4176. ; 57:2, s. 128-134
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major drawbacks to the combustion of 100% biomass in power station boilers is the increase in the fouling and corrosion of superheaters. Experience shows that conventional superheater steels last no more than 20 000 h or four operating years before they must be replaced, if 100% wood-based fuel is used and the steam temperature is higher than 480C. Rapid corrosion of superheaters leads to increased maintenance costs while widespread deposit formation gives rise to a decrease in efficiency of the turbine and an increase in unplanned outages. This paper reports on measures taken to reduce superheater corrosion. Most biomass fuels have a high content of alkali metals and chlorine, but they contain very little sulphur compared to fossil fuels. Potassium chloride, KCl, is found in the gas phase, condenses on the superheater tubes and forms complex alkali salts with iron and other elements in the steels. These salts have low melting points and are very corrosive. The corrosion can be mitigated by use of an instrument for in-situ measurement of alkali chlorides in the flue gases, in combination with the addition of ammonium sulphate.  An ammonium sulphate solution, specially developed for the reduction of corrosion was sprayed into the flue gases and effectively converted KCl into potassium sulphate, K2SO4, much less corrosive than KCl. Deposit probe tests and long-term corrosion probe tests have been performed in-situ in two biomass-fired fluidised bed boilers. One boiler, 105 MW tot, 540C steam, is the CHP plant in Nyköping,Sweden. The other producing 98 MWtot, 480C steam, is a bark-fired boiler at a pulp and paper mill in Munksund, also in Sweden. Tests have been performed with a range of steel types, ferritic and austenitic, with ammonium sulphate additive and under normal conditions (no additive). Corrosion rates have been measured, deposit chemistry analysed and flue gas chemistry and KCl content measured. The structure and composition of the oxide with and without ammonium sulphate has been investigated. The results show that ammonium sulphate reduced the KCl levels in the flue gases, removed the chlorides from the deposits and the metal/oxide interface, greatly reduced the deposition rates and halved the corrosion rates for superheater materials. The alkali chloride measuring system and the use of ammonium sulphate for the reduction of corrosion have now been patented.
  •  
49.
  • Henderson, Pamela, et al. (författare)
  • The use of fuel additives in wood and waste wood fired boilers to reduce corrosion and fouling problems
  • 2004
  • Ingår i: VGB PowerTech. - Essen : VGB PowerTech e.V.. - 1435-3199. ; 84:6, s. 58-62
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major drawbacks to the implementation of 100% biomass in conventional power station boilers is the increase in the fouling and corrosion of superheaters. Rapid corrosion of superheaters leads to increased maintenance costs while fouling caused by widespread deposit formation gives rise to a decrease in efficiency of the turbine and an increase in unplanned outages. The purpose of this paper is to report on the effects of fuel additives to change the biofuel chemistry, thus making the fuel less problematic and reducing corrosion and fouling problems. Full-scale trials have been carried out in 35MWth and 105 MWth combined heat and power stations. Most biomass fuels have a high content of alkali metals and sometimes high chlorine levels, but they contain very little sulphur compared to fossil fuels. It is thought that the addition of sulphur to the fuel could help to reduce corrosion since a deposit containing only alkali sulphates has a higher first melting point than deposits containing alkali chlorides. Molten phases increase the corrosion and fouling rates and in this sense, sulphates are preferred to chlorides in the deposits. To investigate the effect fuel additives, trials were initially performed in a 35 MWth wood-fired circulating fluidised bed boiler, adding controlled amounts of sulphur and a newly developed compound additive, called ChlorOut, to the 100% wood fuel feed or flue gases. It was found that the compound additive, ChlorOut, had a greater effect in removing KCl from the flue gases that pure sulphur, whilst having only a marginal effect on the SO2  content of the flue gas and sulphate content and pH of the flue gas condensate. Long term tests with ChlorOut were then repeated in a 105 MWth boiler and in addition corrosion probe testing of superheater steels was performed with and without ChlorOut. The results showed that the ChlorOut additive effectively reduced KCl levels in the flue gas at the superheaters, removed chlorides from the deposits, reduced fouling problems and reduced the corrosion rates by about 50%.
  •  
50.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 63
Typ av publikation
tidskriftsartikel (43)
forskningsöversikt (7)
konferensbidrag (5)
annan publikation (3)
licentiatavhandling (3)
doktorsavhandling (1)
visa fler...
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (52)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (2)
Författare/redaktör
Horacek, J (32)
Nardon, E (32)
Krieger, K. (31)
Ariola, M (31)
Baciero, A (31)
Bernardo, J (31)
visa fler...
Blanchard, P (31)
Bobkov, V (31)
Bolzonella, T (31)
Brezinsek, S (31)
Buratti, P (31)
Cannas, B (31)
Carralero, D (31)
Carvalho, P (31)
Chernyshova, M (31)
Coelho, R (31)
Colas, L (31)
Cruz, N (31)
Cseh, G (31)
Frigione, D (31)
Giacomelli, L (31)
Giovannozzi, E (31)
Huber, A (31)
Jacquet, P (31)
Joffrin, E (31)
Lehnen, M (31)
Loarer, T (31)
Loarte, A (31)
Mailloux, J (31)
Mantica, P (31)
Marocco, D (31)
Mattei, M (31)
Meakins, A (31)
Mlynar, J (31)
Monakhov, I (31)
Nabais, F (31)
Naulin, V (31)
Neu, R (31)
Nocente, M (31)
Pironti, A (31)
Pitts, R (31)
Ramogida, G (31)
Refy, D (31)
Reiser, D (31)
Reux, C (31)
Romanelli, M (31)
Saarelma, S (31)
Salewski, M (31)
Salmi, A (31)
Sauter, O (31)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (54)
Chalmers tekniska högskola (31)
Uppsala universitet (28)
RISE (5)
Umeå universitet (2)
Lunds universitet (2)
visa fler...
Karolinska Institutet (2)
visa färre...
Språk
Engelska (61)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (38)
Teknik (37)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy