SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henning E) "

Sökning: WFRF:(Henning E)

  • Resultat 1-50 av 336
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Morales, J. C., et al. (författare)
  • A giant exoplanet orbiting a very-low-mass star challenges planet formation models
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6460, s. 1441-1445
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
  •  
3.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
4.
  • Smith, Jennifer A, et al. (författare)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • Ingår i: Nature (London). - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 533:7604, s. 539-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
5.
  • Desidera, S., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) I. Sample definition and target characterization
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from ~5 to 300 au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys.Aims. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE.Methods. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample wererevisited, including for instance measurements from the Gaia Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations.Results. The properties of individual targets and of the sample as a whole are presented.
  •  
6.
  • Chaturvedi, P., et al. (författare)
  • TOI-1468: A system of two transiting planets, a super-Earth and a mini-Neptune, on opposite sides of the radius valley
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b (P-b = 1.88 d), has a planetary mass of M-b = 3.21 +/- 0.24M(circle plus) and a radius of R-b = 1.280(-0.039)(+0.038) R-circle plus, resulting in a density of rho(b) = 8.39(-0.92)(+1.05) g cm(-3), which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c (P-c = 15.53 d), we derive a mass of M-c = 6.64(-0.68)(+0.67) M-circle plus,aradius of R-c = 2.06 +/- 0.04 R-circle plus, and a bulk density of rho(c) = 2.00(-0.19)(+0.21) g cm(-3), which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios.
  •  
7.
  • Jelenkovic, Aline, et al. (författare)
  • Zygosity Differences in Height and Body Mass Index of Twins From Infancy to Old Age : A Study of the CODATwins Project
  • 2015
  • Ingår i: Twin Research and Human Genetics. - : Cambridge University Press. - 1832-4274 .- 1839-2628. ; 18:5, s. 557-570
  • Tidskriftsartikel (refereegranskat)abstract
    • A trend toward greater body size in dizygotic (DZ) than in monozygotic (MZ) twins has been suggested by some but not all studies, and this difference may also vary by age. We analyzed zygosity differences in mean values and variances of height and body mass index (BMI) among male and female twins from infancy to old age. Data were derived from an international database of 54 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins), and included 842,951 height and BMI measurements from twins aged 1 to 102 years. The results showed that DZ twins were consistently taller than MZ twins, with differences of up to 2.0 cm in childhood and adolescence and up to 0.9 cm in adulthood. Similarly, a greater mean BMI of up to 0.3 kg/m(2) in childhood and adolescence and up to 0.2 kg/m(2) in adulthood was observed in DZ twins, although the pattern was less consistent. DZ twins presented up to 1.7% greater height and 1.9% greater BMI than MZ twins; these percentage differences were largest in middle and late childhood and decreased with age in both sexes. The variance of height was similar in MZ and DZ twins at most ages. In contrast, the variance of BMI was significantly higher in DZ than in MZ twins, particularly in childhood. In conclusion, DZ twins were generally taller and had greater BMI than MZ twins, but the differences decreased with age in both sexes.
  •  
8.
  • Lacour, S., et al. (författare)
  • The mass of β Pictoris c from β Pictoris b orbital motion
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet.Methods. We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations.Results. From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04(-3.10)(+4.53) M-Jup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15(-1.06)(+1.08) M-Jup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89(-0.75)(+0.75) M-Jup. With a semimajor axis of 2.68 +/- 0.02 au, a period of 1221 +/- 15 days, and an eccentricity of 0.32 +/- 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets' dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet.
  •  
9.
  • Langlois, M., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : II. Observations, data reduction and analysis, detection performances, and initial results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent decades, direct imaging has confirmed the existence of substellar companions (exoplanets or brown dwarfs) on wide orbits (>10 au) around their host stars. In striving to understand their formation and evolution mechanisms, in 2015 we initiated the SPHERE infrared survey for exoplanets (SHINE), a systematic direct imaging survey of young, nearby stars that is targeted at exploring their demographics.Aims. We aim to detect and characterize the population of giant planets and brown dwarfs beyond the snow line around young, nearby stars. Combined with the survey completeness, our observations offer the opportunity to constrain the statistical properties (occurrence, mass and orbital distributions, dependency on the stellar mass) of these young giant planets.Methods. In this study, we present the observing and data analysis strategy, the ranking process of the detected candidates, and the survey performances for a subsample of 150 stars that are representative of the full SHINE sample. Observations were conducted in a homogeneous way between February 2015 and February 2017 with the dedicated ground-based VLT/SPHERE instrument equipped with the IFS integral field spectrograph and the IRDIS dual-band imager, covering a spectral range between 0.9 and 2.3 μm. We used coronographic, angular, and spectral differential imaging techniques to achieve the best detection performances for this study, down to the planetary mass regime.Results. We processed, in a uniform manner, more than 300 SHINE observations and datasets to assess the survey typical sensitivity as a function of the host star and of the observing conditions. The median detection performance reached 5σ-contrasts of 13 mag at 200 mas and 14.2 mag at 800 mas with the IFS (YJ and YJH bands), and of 11.8 mag at 200 mas, 13.1 mag at 800 mas, and 15.8 mag at 3 as with IRDIS in H band, delivering one of the deepest sensitivity surveys thus far for young, nearby stars. A total of sixteen substellar companions were imaged in this first part of SHINE: seven brown dwarf companions and ten planetary-mass companions.These include two new discoveries, HIP 65426 b and HIP 64892 B, but not the planets around PDS70 that had not been originally selected for the SHINE core sample. A total of 1483 candidates were detected, mainly in the large field of view that characterizes IRDIS. The color-magnitude diagrams, low-resolution spectrum (when available with IFS), and follow-up observations enabled us to identify the nature (background contaminant or comoving companion) of about 86% of our subsample. The remaining cases are often connected to crowded-field follow-up observations that were missing. Finally, even though SHINE was not initially designed for disk searches, we imaged twelve circumstellar disks, including three new detections around the HIP 73145, HIP 86598, and HD 106906 systems.Conclusions. Nowadays, direct imaging provides a unique opportunity to probe the outer part of exoplanetary systems beyond 10 au to explore planetary architectures, as highlighted by the discoveries of: one new exoplanet, one new brown dwarf companion, and three new debris disks during this early phase of SHINE. It also offers the opportunity to explore and revisit the physical and orbital properties of these young, giant planets and brown dwarf companions (relative position, photometry, and low-resolution spectrum in near-infrared, predicted masses, and contrast in order to search for additional companions). Finally, these results highlight the importance of finalizing the SHINE systematic observation of about 500 young, nearby stars for a full exploration of their outer part to explore the demographics of young giant planets beyond 10 au and to identify the most interesting systems for the next generation of high-contrast imagers on very large and extremely large telescopes.
  •  
10.
  • Silventoinen, Karri, et al. (författare)
  • The CODATwins Project : The Cohort Description of Collaborative Project of Development of Anthropometrical Measures in Twins to Study Macro-Environmental Variation in Genetic and Environmental Effects on Anthropometric Traits
  • 2015
  • Ingår i: Twin Research and Human Genetics. - : Cambridge University Press. - 1832-4274 .- 1839-2628. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • For over 100 years, the genetics of human anthropometric traits has attracted scientific interest. In particular, height and body mass index (BMI, calculated as kg/m2) have been under intensive genetic research. However, it is still largely unknown whether and how heritability estimates vary between human populations. Opportunities to address this question have increased recently because of the establishment of many new twin cohorts and the increasing accumulation of data in established twin cohorts. We started a new research project to analyze systematically (1) the variation of heritability estimates of height, BMI and their trajectories over the life course between birth cohorts, ethnicities and countries, and (2) to study the effects of birth-related factors, education and smoking on these anthropometric traits and whether these effects vary between twin cohorts. We identified 67 twin projects, including both monozygotic (MZ) and dizygotic (DZ) twins, using various sources. We asked for individual level data on height and weight including repeated measurements, birth related traits, background variables, education and smoking. By the end of 2014, 48 projects participated. Together, we have 893,458 height and weight measures (52% females) from 434,723 twin individuals, including 201,192 complete twin pairs (40% monozygotic, 40% same-sex dizygotic and 20% opposite-sex dizygotic) representing 22 countries. This project demonstrates that large-scale international twin studies are feasible and can promote the use of existing data for novel research purposes.
  •  
11.
  • Bluhm, P., et al. (författare)
  • Precise mass and radius of a transiting super-Earth planet orbiting the M dwarf TOI-1235: a planet in the radius gap?
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the confirmation of a transiting planet around the bright weakly active M0.5 V star TOI-1235 (TYC 4384-1735-1, V ≈ 11.5 mag), whose transit signal was detected in the photometric time series of sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise RV measurements with the CARMENES, HARPS-N, and iSHELL spectrographs, supplemented by high-resolution imaging and ground-based photometry. A comparison of the properties derived for TOI-1235 b with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than that of Earth. In particular, we measure a mass of Mp = 5.9 ± 0.6 M⊕ and a radius of Rp = 1.69 ± 0.08 R⊕, which together result in a density of ρp = 6.7- 1.1+ 1.3 g cm-3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass places our discovery in the radius gap, which is a transition region between rocky planets and planets with significant atmospheric envelopes. A few examples of planets occupying the radius gap are known to date. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R⊕ or larger at the insolation levels received by TOI-1235 b (~60 S⊕). This makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
  •  
12.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
13.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
14.
  • Mallorquin, M., et al. (författare)
  • TOI-1801 b: A temperate mini-Neptune around a young M0.5 dwarf
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery, mass, and radius determination of TOI-1801 b, a temperate mini-Neptune around a young M dwarf. TOI-1801 b was observed in TESS sectors 22 and 49, and the alert that this was a TESS planet candidate with a period of 21.3 days went out in April 2020. However, ground-based follow-up observations, including seeing-limited photometry in and outside transit together with precise radial velocity (RV) measurements with CARMENES and HIRES revealed that the true period of the planet is 10.6 days. These observations also allowed us to retrieve a mass of 5.74 +/- 1.46 M-circle plus, which together with a radius of 2.08 +/- 0.12 R-circle plus, means that TOI-1801 b is most probably composed of water and rock, with an upper limit of 2% by mass of H-2 in its atmosphere. The stellar rotation period of 16 days is readily detectable in our RV time series and in the ground-based photometry. We derived a likely age of 600-800 Myr for the parent star TOI-1801, which means that TOI-1801 b is the least massive young mini-Neptune with precise mass and radius determinations. Our results suggest that if TOI-1801 b had a larger atmosphere in the past, it must have been removed by some evolutionary mechanism on timescales shorter than 1 Gyr.
  •  
15.
  • Vigan, A., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : III. The demographics of young giant exoplanets below 300 au with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with SPHERE on the Very Large Telescope for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars spanning spectral types from B to M that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a Markov chain Monte Carlo tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.0−9.7+13.5, 5.8−2.8+4.7, and 12.6−7.1+12.9% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.7−2.8+3.8%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
  •  
16.
  • Wright, G. S., et al. (författare)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build
  • 2015
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 595-611
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 mu m. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar to 100) spectroscopy, and medium-resolving power (R similar to 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of
  •  
17.
  • Boretzky, K., et al. (författare)
  • NeuLAND: The high-resolution neutron time-of-flight spectrometer for R 3 B at FAIR
  • 2021
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1014
  • Tidskriftsartikel (refereegranskat)abstract
    • NeuLAND (New Large-Area Neutron Detector) is the next-generation neutron detector for the R3B (Reactions with Relativistic Radioactive Beams) experiment at FAIR (Facility for Antiproton and Ion Research). NeuLAND detects neutrons with energies from 100 to 1000 MeV, featuring a high detection efficiency, a high spatial and time resolution, and a large multi-neutron reconstruction efficiency. This is achieved by a highly granular design of organic scintillators: 3000 individual submodules with a size of 5 × 5 × 250 cm3 are arranged in 30 double planes with 100 submodules each, providing an active area of 250 × 250 cm2 and a total depth of 3 m. The spatial resolution due to the granularity together with a time resolution of σt≤ 150 ps ensures high-resolution capabilities. In conjunction with calorimetric properties, a multi-neutron reconstruction efficiency of 50% to 70% for four-neutron events will be achieved, depending on both the emission scenario and the boundary conditions allowed for the reconstruction method. We present in this paper the final design of the detector as well as results from test measurements and simulations on which this design is based.
  •  
18.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
19.
  • Cheetham, A., et al. (författare)
  • Discovery of a brown dwarf companion to the star HIP 64892
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 +/- 0.0023) corresponds to a projected distance of 159 +/- 12AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9 gamma +/- 1. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of T-eff = 2600 +/- 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of similar to 29-37 M-J at the estimated age of 16(-7)(+15) Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q similar to 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects.
  •  
20.
  • de Blok, W.J.G., et al. (författare)
  • an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities.
  •  
21.
  • Garcia-Lopez, R., et al. (författare)
  • A measure of the size of the magnetospheric accretion region in TW Hydrae
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 584:7822, s. 547-550
  • Tidskriftsartikel (refereegranskat)abstract
    • Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk close to the corotation radius, at which the disk rotates at the same rate as the star. Spectro-interferometric studies in young stellar objects show that hydrogen emission (a well known tracer of accretion activity) mostly comes from a region a few milliarcseconds across, usually located within the dust sublimation radius1–3. The origin of the hydrogen emission could be the stellar magnetosphere, a rotating wind or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that Brackett γ (Brγ) emission is spatially resolved rules out the possibility that most of the emission comes from the magnetosphere4–6 because the weak magnetic fields (some tenths of a gauss) detected in these sources7,8 result in very compact magnetospheres. In the case of T Tauri sources, their larger magnetospheres should make them easier to resolve. The small angular size of the magnetosphere (a few tenths of a milliarcsecond), however, along with the presence of winds9,10 make the interpretation of the observations challenging. Here we report optical long-baseline interferometric observations that spatially resolve the inner disk of the T Tauri star TW Hydrae. We find that the near-infrared hydrogen emission comes from a region approximately 3.5 stellar radii across. This region is within the continuum dusty disk emitting region (7 stellar radii across) and also within the corotation radius, which is twice as big. This indicates that the hydrogen emission originates in the accretion columns (funnel flows of matter accreting onto the star), as expected in magnetospheric accretion models, rather than in a wind emitted at much larger distance (more than one astronomical unit).
  •  
22.
  • Keppler, M., et al. (författare)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
23.
  • Lagrange, A. -M., et al. (författare)
  • Post-conjunction detection of beta Pictoris b with VLT/SPHERE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. With an orbital distance comparable to that of Saturn in the solar system, beta Pictoris b is the closest (semi-major axis similar or equal to 9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to beta Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters.Aims. We aimed at further constraining beta Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.Methods. We used SPHERE at the VLT to precisely monitor the orbital motion of beta beta Pictoris b since first light of the instrument in 2014.Results. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected beta Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30 degrees in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 +/- 0.5 au (1 sigma), it definitely excludes previously reported possible long orbital periods, and excludes beta Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
  •  
24.
  • Lis, D. C., et al. (författare)
  • Herschel/HIFI discovery of interstellar chloronium (H2Cl+)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first detection of chloronium, H_2Cl^+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 2_12-1_01 lines of ortho-H\_2^35Cl^+ and ortho-H\_2^37Cl^+ are detected in absorption towards NGC 6334I, and the 1_11-0_00 transition of para-H\_2^35Cl^+ is detected in absorption towards NGC 6334I and Sgr B2(S). The H_2Cl^+ column densities are compared to those of the chemically-related species HCl. The derived HCl/H_2Cl^+ column density ratios, ~1-10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H_2Cl^+ column densities, in excess of 10^13 cm^-2, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.
  •  
25.
  • Koutoulaki, M., et al. (författare)
  • The GRAVITY young stellar object survey: IV. The CO overtone emission in 51 Oph at sub-au scales
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 51 Oph is a Herbig Ae/Be star that exhibits strong near-infrared CO ro-vibrational emission at 2.3 μm, most likely originating in the innermost regions of a circumstellar disc. Aims. We aim to obtain the physical and geometrical properties of the system by spatially resolving the circumstellar environment of the inner gaseous disc. Methods. We used the second-generation Very Large Telescope Interferometer instrument GRAVITY to spatially resolve the continuum and the CO overtone emission. We obtained data over 12 baselines with the auxiliary telescopes and derive visibilities, and the differential and closure phases as a function of wavelength. We used a simple local thermal equilibrium ring model of the CO emission to reproduce the spectrum and CO line displacements. Results. Our interferometric data show that the star is marginally resolved at our spatial resolution, with a radius of ∼10.58 ± 2.65R·. The K-band continuum emission from the disc is inclined by 63° ± 1°, with a position angle of 116° ± 1°, and 4 ± 0.8 mas (0.5 ± 0.1 au) across. The visibilities increase within the CO line emission, indicating that the CO is emitted within the dust-sublimation radius. By modelling the CO bandhead spectrum, we derive that the CO is emitted from a hot (T = 1900-2800 K) and dense (NCO = (0.9-9) × 1021 cm-2) gas. The analysis of the CO line displacement with respect to the continuum allows us to infer that the CO is emitted from a region 0.10 ± 0.02 au across, well within the dust-sublimation radius. The inclination and position angle of the CO line emitting region is consistent with that of the dusty disc. Conclusions. Our spatially resolved interferometric observations confirm the CO ro-vibrational emission within the dust-free region of the inner disc. Conventional disc models exclude the presence of CO in the dust-depleted regions of Herbig AeBe stars. Ad hoc models of the innermost disc regions, that can compute the properties of the dust-free inner disc, are therefore required.
  •  
26.
  • Lazzoni, C., et al. (författare)
  • Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aims. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods. The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (M-p, a(p)), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results. For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits.
  •  
27.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
28.
  • Singh, G., et al. (författare)
  • Revealing asymmetrical dust distribution in the inner regions of HD 141569
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The combination of high-contrast imaging with spectroscopy and polarimetry offers a pathway to studying the grain distribution and properties of debris disks in exquisite detail. Here, we focus on the case of a gas-rich debris disk around HD 141569A, which features a multiple-ring morphology first identified with SPHERE in the near-infrared.Aims. We obtained polarimetric differential imaging with SPHERE in the H-band to compare the scattering properties of the innermost ring at 44 au with former observations in total intensity with the same instrument. In polarimetric imaging, we observed that the intensity of the ring peaks in the south-east, mostly in the forward direction, whereas in total intensity imaging, the ring is detected only at the south. This noticeable characteristic suggests a non-uniform dust density in the ring. With these two sets of images, we aim to study the distribution of the dust to solve for the actual dust distribution.Methods. We implemented a density function varying azimuthally along the ring and generated synthetic images both in polarimetry and in total intensity, which are then compared to the actual data. The search for the best-fit model was performed both with a grid-based and an MCMC approach. Using the outcome of this modelization, we further measured the polarized scattering phase function for the observed scattering angle between 33 degrees and 147 degrees as well as the spectral reflectance of the southern part of the ring between 0.98 and 2.1 mu m. We tentatively derived the grain properties by comparing these quantities with MCFOST models and assuming Mie scattering.Results. We find that the dust density peaks in the south-west at an azimuthal angle of 220 degrees similar to 238 degrees with a rather broad width of 61 degrees similar to 127 degrees. The difference in the intensity distributions observed in polarimetry and total intensity is the result of this particular morphology. Although there are still uncertainties that remain in the determination of the anisotropic scattering factor, the implementation of an azimuthal density variation to fit the data proved to be robust. Upon elaborating on the origin of this dust density distribution, we conclude that it could be the result of a massive collision when we account for the effect of the high gas mass that is present in the system on the dynamics of grains. In terms of grain composition, our preliminary interpretation indicates a mixture of porous sub-micron sized astro-silicate and carbonaceous grains.Conclusions. The SPHERE observations have allowed, for the first time, for meaningful constraints to be placed on the dust distribution beyond the standard picture of a uniform ring-like debris disk. However, future studies with a multiwavelength approach and additional detailed modeling would be required to better characterize the grain properties in the HD 141569 system.
  •  
29.
  • Webb, Thomas R., et al. (författare)
  • Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease
  • 2017
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 69:7, s. 823-836
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits.OBJECTIVES This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci.METHODS In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs.RESULTS We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 x 10(-4) with a range of other diseases/traits.CONCLUSIONS We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
  •  
30.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
31.
  •  
32.
  • Asensio-Torres, Ruben, et al. (författare)
  • Polarimetry and flux distribution in the debris disk around HD 32297
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > 5 sigma levels from similar to 0.45 '' to similar to 1.7 '' (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of similar to 0.75 '' (NE side) and similar to 0.65 '' (SW side). Global forward-modelling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from similar to 0.25-1.6 '', although the central region is quite noisy and high S/N are only found in the range similar to 0.75-1.2 ''. The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from similar to 10% at 0.55 '' to similar to 25% at 1.6 ''. The maximum is found at scattering angles of similar to 90 degrees, either from the main components of the disk or from dust grains blown out to larger radii.
  •  
33.
  • Boccaletti, A., et al. (författare)
  • Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale : Confirmation and new discoveries
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims. We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods. AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results. The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s(-1) ); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40 '' and 0.55 '' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4 from the star (as of May 2016). Conclusions. Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars.
  •  
34.
  • Bonnefoy, M., et al. (författare)
  • The GJ 504 system revisited Combining interferometric, radial velocity, and high contrast imaging data
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The G-type star GJ504A is known to host a 3-35 M-Jup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 mu m) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1.35 +/- 0.04 R-circle dot for GJ504A. The radius yields isochronal ages of 21 +/- 2 Myr or 4.0 +/- 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4(-4.3)(+3.8) degrees or 18.6(-3.8)(+4.3) degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 mu m SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (<= 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T-eff = 550 +/- 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L-circle dot = 6.15 +/- 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T-eff yield masses of M = 1.3(-0.3)(+0.6) M-Jup and M = 23(-9)(+10) M-Jup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M-Jup with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.
  •  
35.
  • Ceccarelli, C., et al. (författare)
  • Herschel spectral surveys of star- forming regions Overview of the 555-636 GHz range
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L22-
  • Tidskriftsartikel (refereegranskat)abstract
    • High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project " Chemical HErschel Surveys of Star forming regions", CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 x 105 L similar to : L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence./absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status.
  •  
36.
  • Codella, C., et al. (författare)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. I. Shock chemical complexity
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L112-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of the unbiased survey of the L1157-B1 bow shock, obtained with HIFI in the framework of the key program Chemical HErschel Survey of Star forming regions (CHESS). The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The bright blue-shifted bow shock B1 is the ideal laboratory for studying the link between the hot (~1000-2000 K) component traced by H2 IR-emission and the cold (~10-20 K) swept-up material. The main aim is to trace the warm gas chemically enriched by the passage of a shock and to infer the excitation conditions in L1157-B1. A total of 27 lines are identified in the 555-636 GHz region, down to an average 3σ level of 30 mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as discussed by Lefloch et al. in this volume. Here we report on the identification of lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH) and that of H2O is consistent with a scenario in which water is also formed in the gas-phase in high-temperature regions where sputtering or grain-grain collisions are not efficient. The high excitation range of the observed tracers allows us to infer, for the first time for these species, the existence of a warm (≥200 K) gas component coexisting in the B1 bow structure with the cold and hot gas detected from ground. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Table 1 is only available in electronic form at http://www.aanda.org
  •  
37.
  • Duarte-Cabral, A., et al. (författare)
  • The SEDIGISM survey: Molecular clouds in the inner Galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3027-3049
  • Forskningsöversikt (refereegranskat)abstract
    • We use the 13CO(2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
  •  
38.
  • Frazier-Wood, Alexis C., et al. (författare)
  • Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses
  • 2016
  • Ingår i: Nature Genetics. - : Nature Research (part of Springer Nature). - 1061-4036 .- 1546-1718. ; 48, s. 624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (vertical bar(p) over cap vertical bar approximate to 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.
  •  
39.
  • Garcia-Lopez, R., et al. (författare)
  • The GRAVITY young stellar object survey XII. The hot gas disk component in Herbig Ae/Be stars
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The region of protoplanetary disks closest to a star (within 1–2 au) is shaped by a number of different processes, from accretion of the disk material onto the central star to ejection in the form of winds and jets. Optical and near-IR emission lines are potentially good tracers of inner disk processes if very high spatial and/or spectral resolution are achieved. Aims. In this paper, we exploit the capabilities of the VLTI-GRAVITY near-IR interferometer to determine the location and kinematics of the hydrogen emission line Brγ. Methods. We present VLTI-GRAVITY observations of the Brγ line for a sample of 26 stars of intermediate mass (HAEBE), the largest sample so far analysed with near-IR interferometry. Results. The Brγ line was detected in 17 objects. The emission is very compact (in most cases only marginally resolved), with a size of 10–30 R∗(1–5 mas). About half of the total flux comes from even smaller regions, which are unresolved in our data. For eight objects, it was possible to determine the position angle (PA) of the line-emitting region, which is generally in agreement with that of the inner-dusty disk emitting the K-band continuum. The position-velocity pattern of the Brγ line-emitting region of the sampled objects is roughly consistent with Keplerian rotation. The exception is HD 45677, which shows more extended emission and more complex kinematics. The most likely scenario for the Brγ origin is that the emission comes from an MHD wind launched very close to the central star, in a region well within the dust sublimation radius. An origin in the bound gas layer at the disk surface cannot be ruled out, while accreting matter provides only a minor fraction of the total flux. Conclusions. These results show the potential of near-IR spectro-interferometry to study line emission in young stellar objects.
  •  
40.
  • Gratton, R., et al. (författare)
  • Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 638
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Proxima Centauri is the closest star to the Sun and it is known to host an Earth-like planet in its habitable zone; very recently a second candidate planet was proposed based on radial velocities. At quadrature, the expected projected separation of this new candidate is larger than 1 arcsec, making it a potentially interesting target for direct imaging.Aims. While identification of the optical counterpart of this planet is expected to be very difficult, successful identification would allow for a detailed characterization of the closest planetary system.Methods. We searched for a counterpart in SPHERE images acquired over four years through the SHINE survey. In order to account for the expected large orbital motion of the planet, we used a method that assumes the circular orbit obtained from radial velocities and exploits the sequence of observations acquired close to quadrature in the orbit. We checked this with a more general approach that considers Keplerian motion, called K-stacker.Results. We did not obtain a clear detection. The best candidate has signal-to-noise ratio (S/N) = 6.1 in the combined image. A statistical test suggests that the probability that this detection is due to random fluctuation of noise is <1%, but this result depends on the assumption that the distribution of noise is uniform over the image, a fact that is likely not true. The position of this candidate and the orientation of its orbital plane fit well with observations in the ALMA 12 m array image. However, the astrometric signal expected from the orbit of the candidate we detected is 3 away from the astrometric motion of Proxima as measured from early Gaia data. This, together with the unexpectedly high flux associated with our direct imaging detection, means we cannot confirm that our candidate is indeed Proxima c.Conclusions. On the other hand, if confirmed, this would be the first observation in imaging of a planet discovered from radial velocities and the second planet (after Fomalhaut b) of reflecting circumplanetary material. Further confirmation observations should be done as soon as possible.
  •  
41.
  • Henshaw, Jonathan D., et al. (författare)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
42.
  • Lazzoni, C., et al. (författare)
  • The search for disks or planetary objects around directly imaged companions : a candidate around DH Tauri B
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered using radial velocity and transit techniques, an increasing number have been directly imaged. These planets and brown dwarfs are extraordinary sources of information that help in rounding out our understanding of planetary systems.Aims. In this paper, we focus our attention on substellar companions detected with the latter technique, with the primary goal of investigating their close surroundings and looking for additional companions and satellites, as well as disks and rings. Any such discovery would shed light on many unresolved questions, particularly with regard to their possible formation mechanisms.Methods. To reveal bound features of directly imaged companions, whether for point-like or extended sources, we need to suppress the contribution from the source itself. Therefore, we developed a method based on the negative fake companion technique that first estimates the position in the field of view (FoV) and the flux of the imaged companion with high precision, then subtracts a rescaled model point spread function (PSF) from the imaged companion, using either an image of the central star or another PSF in the FoV. Next it performs techniques, such as angular differential imaging, to further remove quasi-static patterns of the star (i.e., speckle contaminants) that affect the residuals of close-in companions.Results. After testing our tools on simulated companions and disks and on systems that were chosen ad hoc, we applied the method to the sample of substellar objects observed with SPHERE during the SHINE GTO survey. Among the 27 planets and brown dwarfs we analyzed, most objects did not show remarkable features, which was as expected, with the possible exception of a point source close to DH Tau B. This candidate companion was detected in four different SPHERE observations, with an estimated mass of ~1MJup, and a mass ratio with respect to the brown dwarf of 1∕10. This binary system, if confirmed, would be the first of its kind, opening up interesting questions for the formation mechanism, evolution, and frequency of such pairs. In order to address the latter, the residuals and contrasts reached for 25 companions in the sample of substellar objects observed with SPHERE were derived. If the DH Tau Bb companion is real, the binary fraction obtained is ~7%, which is in good agreement with the results obtained for field brown dwarfs.Conclusions. While there may currently be many limitations affecting the exploration of bound features to directly imaged exoplanets and brown dwarfs, next-generation instruments from the ground and space (i.e., JWST, ELT, and LUVOIR) will be able to image fainter objects and, thus, drive the application of this technique in upcoming searches for exo-moons and circumplanetary disks. 
  •  
43.
  • Lefloch, B., et al. (författare)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. II. Shock dynamics
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L113-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims: We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods: The CO 5-4 and o-H2O 110-101 lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555-636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results: Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 105 cm-3) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0-3.0) × 104 cm-3), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10-7 up to 8 × 10-5. The properties of the high-velocity component agree well with the predictions of steady-state C-shock models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
44.
  • Luque, R., et al. (författare)
  • Precise mass determination for the keystone sub-Neptune planet transiting the mid-type M dwarf G 9-40
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Despite being a prominent subset of the exoplanet population discovered in the past three decades, the nature and provenance of sub-Neptune-sized planets is still one of the open questions in exoplanet science. Aims. For planets orbiting bright stars, precisely measuring the orbital and planet parameters of the system is the best approach to distinguish between competing theories regarding their formation and evolution. Methods. We obtained 69 new radial velocity observations of the mid-M dwarf G 9-40 with the CARMENES instrument to measure for the first time the mass of its transiting sub-Neptune planet, G 9-40 b, discovered in data from the K2 mission. Results. Combined with new observations from the TESS mission during Sectors 44, 45, and 46, we are able to measure the radius of the planet to an uncertainty of 3.4% (R-b = 1.900 +/- 0.065 R-circle plus) and determine its mass with a precision of 16% (M-b = 4.00 +/- 0.63 M-circle plus). The resulting bulk density of the planet is inconsistent with a terrestrial composition and suggests the presence of either a water-rich core or a significant hydrogen-rich envelope. Conclusions. G 9-40 b is referred to as a keystone planet due to its location in period-radius space within the radius valley. Several theories offer explanations for the origin and properties of this population and this planet is a valuable target for testing the dependence of those models on stellar host mass. By virtue of its brightness and small size of the host, it joins L 98-59 d as one of the two best warm (T-eq similar to 400 K) sub-Neptunes for atmospheric characterization with JWST, which will probe cloud formation in sub-Neptune-sized planets and break the degeneracies of internal composition models.
  •  
45.
  • Mancini, L., et al. (författare)
  • The GAPS programme with HARPS-N at TNG XVI. Measurement of the Rossiter-McLaughlin effect of transiting planetary systems HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The measurement of the orbital obliquity of hot Jupiters with different physical characteristics can provide clues to the mechanisms of migration and orbital evolution of this particular class of giant exoplanets.Aims. We aim to derive the degree of alignment between planetary orbit and stellar spin angular momentum vectors and look for possible links with other orbital and fundamental physical parameters of the star-planet system. We focus on the characterisation of five transiting planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60) and the determination of their sky-projected planet orbital obliquity through the measurement of the Rossiter-McLaughlin effect.Methods. We used HARPS-N high-precision radial velocity measurements, gathered during transit events, to measure the Rossiter-McLaughlin effect in the target systems and determine the sky-projected angle between the planetary orbital plane and stellar equator. The characterisation of stellar atmospheric parameters was performed by exploiting the HARPS-N spectra, using line equivalent width ratios and spectral synthesis methods. Photometric parameters of the five transiting exoplanets were re-analysed through 17 new light curves, obtained with an array of medium-class telescopes, and other light curves from the literature. Survey-time-series photometric data were analysed for determining the rotation periods of the five stars and their spin inclination.Results. From the analysis of the Rossiter-McLaughlin effect we derived a sky-projected obliquity of lambda = 21.2 degrees +/- 8.7 degrees, lambda = -54 degrees(+41 degrees)(-13 degrees), lambda = -2.1 degrees +/- 3.0 degrees, lambda = 0 degrees +/- 11 degrees, and lambda = -129 degrees +/- 17 degrees for HAT-P-3 b, HAT-P-12 b, HAT-P-22 b, WASP-39 b, and WASP-60 b, respectively. The latter value indicates that WASP-60 b is moving on a retrograde orbit. These values represent the first measurements of lambda for the five exoplanetary systems under study. The stellar activity of HAT-P-22 indicates a rotation period of 28.7 +/- 0.4 days, which allowed us to estimate the true misalignment angle of HAT-P-22 b, psi = 24 degrees +/- 18 degrees. The revision of the physical parameters of the five exoplanetary systems returned values that are fully compatible with those existing in the literature. The exception to this is the WASP-60 system, for which, based on higher quality spectroscopic and photometric data, we found a more massive and younger star and a larger and hotter planet.
  •  
46.
  • Mesal, D., et al. (författare)
  • Exploring the R CrA environment with SPHERE Discovery of a new stellar companion
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. R Coronae Australis (R CrA) is the brightest star of the Coronet nebula of the Corona Australis (CrA) star forming region. This star is very red in color, probably due to dust absorption, and is strongly variable. High-contrast instruments allow for an unprecedented direct exploration of the immediate circumstellar environment of this star. Methods. We observed R CrA with the near-infrared (NIR) channels (IFS and IRDIS) of SPHERE at the Very Large Telescope (VET). In this paper, we used four different epochs, three of which are from open time observations while one is from SPHERE guaranteed time. The data were reduced using the data reduction and handling pipeline and the SPHERE Data Center. We implemented custom IDL routines on the reduced data with the aim to subtract the speckle halo. We have also obtained pupil-tracking H-band (1.45-1.85 mu m) observations with the VLT/SINFONI NIR medium-resolution (R similar to 3000) spectrograph. Results. A companion was found at a separation of 0.156 '' from the star in the first epoch and increasing to 0.184 '' in the final epoch. Furthermore, several extended structures were found around the star, the most noteworthy of which is a very bright jet-like structure northeast from the star. The astrometric measurements of the companion in the four epochs confirm that it is gravitationally bound to the star. The SPHERE photometry and SINFONI spectrum, once corrected for extinction, point toward a spectral type object that is early M with a mass between 0.3 and 0.55 M-circle dot. The astrometric analyis provides constraints on the orbit paramenters: e similar to 0.4, semimajor axis at 27-28 au, inclination of similar to 70 degrees, and a period larger than 30 yr. We were also able to put constraints of few M (jup) on the mass of possible other companions down to separations of few tens of au.
  •  
47.
  • Mizuki, T., et al. (författare)
  • Orbital Characterization of GJ1108A System, and Comparison of Dynamical Mass with Model-derived Mass for Resolved Binaries
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 865:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an orbital characterization of GJ1108Aab that is a low-mass binary system in the pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of e = 0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm that the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (M-dynamical,M-GJ1108Aa= 0.72 +/- 0.04 M-circle dot and M-dynamical,M-GJ1108Ab = 0.30 +/- 0.03 M-circle dot) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider that the discrepancy in mass comparison can be attributed to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in the evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.
  •  
48.
  • Murgas, F., et al. (författare)
  • Two super-Earths at the edge of the habitable zone of the nearby M dwarf TOI-2095
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • The main scientific goal of TESS is to find planets smaller than Neptune around stars that are bright enough to allow for further characterization studies. Given our current instrumentation and detection biases, M dwarfs are prime targets in the search for small planets that are in (or near) the habitable zone of their host star. In this work, we use photometric observations and CARMENES radial velocity (RV) measurements to validate a pair of transiting planet candidates found by TESS. The data were fitted simultaneously, using a Bayesian Markov chain Monte Carlo (MCMC) procedure and taking into account the stellar variability present in the photometric and spectroscopic time series. We confirm the planetary origin of the two transiting candidates orbiting around TOI-2095 (LSPM J1902+7525). The star is a nearby M dwarf (d = 41.90 ± 0.03 pc, Teff = 3759 ± 87 K, V = 12.6 mag), with a stellar mass and radius of M∗ = 0.44 ± 0.02 M· and R∗ = 0.44 ± 0.02 R·, respectively. The planetary system is composed of two transiting planets: TOI-2095b, with an orbital period of Pb = 17.66484 ± (7 A - 10- 5) days, and TOI-2095c, with Pc = 28.17232 ± (14 A - 10- 5) days. Both planets have similar sizes with Rb = 1.25 ± 0.07 R· and Rc = 1.33 ± 0.08 R· for planet b and planet c, respectively. Although we did not detect the induced RV variations of any planet with significance, our CARMENES data allow us to set stringent upper limits on the masses of these objects. We find Mb < 4.1 M· for the inner and Mc < 7.4 M· for the outer planet (95% confidence level). These two planets present equilibrium temperatures in the range of 300 350 K and are close to the inner edge of the habitable zone of their star.
  •  
49.
  • Vastel, C., et al. (författare)
  • Ortho-to-para ratio of interstellar heavy water
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L31 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star-forming regions, and in particular the Class 0 protostar IRAS 16293-2422. Aims. The CHESS (Chemical HErschel Surveys of Star forming regions) key program aims to study the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI instrument provide a unique opportunity to observe the fundamental 1(1,1)-0(0,0) transition of the ortho-D2O molecule, which is inaccessible from the ground, and determine the ortho-to-para D2O ratio. Methods. We detected the fundamental transition of the ortho-D2O molecule at 607.35 GHz towards IRAS 16293-2422. The line is seen in absorption with a line opacity of 0.62 +/- 0.11 (1 sigma). From the previous ground-based observations of the fundamental 1(1,0)-1(0,1) transition of para-D2O seen in absorption at 316.80 GHz, we estimate a line opacity of 0.26 +/- 0.05 (1 sigma). Results. We show that the observed absorption is caused by the cold gas in the envelope of the protostar. Using these new observations, we estimate for the first time the ortho-to-para D2O ratio to be lower than 2.6 at a 3 sigma level of uncertainty, which should be compared with the thermal equilibrium value of 2:1.
  •  
50.
  • Vigan, A., et al. (författare)
  • First light of the VLT planet finder SPHERE I. Detection and characterization of the substellar companion GJ 758 B
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 336
Typ av publikation
tidskriftsartikel (302)
konferensbidrag (12)
forskningsöversikt (8)
annan publikation (5)
bokkapitel (4)
doktorsavhandling (2)
visa fler...
rapport (1)
bok (1)
visa färre...
Typ av innehåll
refereegranskat (313)
övrigt vetenskapligt/konstnärligt (20)
populärvet., debatt m.m. (2)
Författare/redaktör
Henning, T. (80)
Janson, Markus (62)
Chauvin, G. (48)
Boccaletti, A. (48)
Feldt, M. (47)
Langlois, M. (46)
visa fler...
Bonnefoy, M. (46)
Gratton, R. (45)
Desidera, S. (44)
Lagrange, A.-M. (44)
Vigan, A. (43)
Mesa, D. (41)
Maire, A.-L. (41)
Zurlo, A. (40)
Henning, Th. (38)
Dominik, C. (33)
Ménard, F. (32)
Sissa, E. (32)
Meyer, M. (30)
Brandner, W. (30)
Hagelberg, J. (29)
Galicher, R. (26)
Cantalloube, F. (25)
Wildi, F. (25)
Beuzit, J-L (25)
Mouillet, D. (24)
Perrot, C. (24)
Cheetham, A. (23)
Kasper, M (22)
Olofsson, J (22)
Benisty, M. (22)
Delorme, P. (22)
Samland, M. (22)
Ligi, R. (22)
Schmidt, T. (21)
Lazzoni, C. (21)
Keppler, M. (20)
Pavlov, A. (20)
Milli, J. (20)
van Dishoeck, E. F. (19)
Bonavita, M. (19)
Weber, L (19)
Henning, Petra, 1974 (19)
Ginski, C. (19)
Biller, B. (19)
Quanz, S. P. (19)
Vandenbussche, B. (18)
Udry, S. (18)
Fusco, T. (18)
D'Orazi, V (18)
visa färre...
Lärosäte
Stockholms universitet (137)
Uppsala universitet (63)
Chalmers tekniska högskola (60)
Lunds universitet (48)
Göteborgs universitet (43)
Karolinska Institutet (35)
visa fler...
Umeå universitet (16)
Kungliga Tekniska Högskolan (15)
Linköpings universitet (9)
Sveriges Lantbruksuniversitet (9)
Örebro universitet (5)
Handelshögskolan i Stockholm (5)
Mittuniversitetet (3)
Jönköping University (2)
Högskolan i Skövde (2)
Karlstads universitet (2)
Högskolan Dalarna (2)
Naturhistoriska riksmuseet (2)
Luleå tekniska universitet (1)
Malmö universitet (1)
Linnéuniversitetet (1)
RISE (1)
visa färre...
Språk
Engelska (330)
Svenska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (230)
Medicin och hälsovetenskap (77)
Teknik (13)
Samhällsvetenskap (8)
Humaniora (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy