SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henriksnäs Johanna) "

Sökning: WFRF:(Henriksnäs Johanna)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lau, Joey, et al. (författare)
  • Oxygenation of islets and its role in transplantation
  • 2009
  • Ingår i: Current Opinion in Organ Transplantation. - 1087-2418 .- 1531-7013. ; 14:6, s. 688-693
  • Forskningsöversikt (refereegranskat)abstract
    • PURPOSE OF REVIEW: To summarize recent studies on the oxygenation of pancreatic islets and its role in islet transplantation. RECENT FINDINGS: Pancreatic islet cells are highly sensitive to hypoxic conditions. Hypoxia contributes to poor islet yield at isolation, as well as inflammatory events and cellular death during culture and early posttransplantation. Use of oxygen carriers, such as semifluorinated alkanes, during pancreas preservation and gas-permeable devices for islet culture and transport has in recent studies proven beneficial. Beta-cell death can be limited posttransplantation by targeting hypoxia-induced cellular pathways that cause apoptotic death. Owing to low revascularization, impaired oxygenation seems to prevail in intraportally transplanted islets. Means to improve revascularization, oxygenation and function of transplanted islets can be achieved not only by stimulating angiogenic factors, but also by decrease of angiostatic factors such as thrombospondin-1 in islets for transplantation. Moreover, bone-marrow-derived cells, such as mesenchymal stem cells and hematopoietic stem cells, can induce or contribute to increased revascularization. SUMMARY: Low oxygenation of islets contributes to cellular death and dysfunction during preparation of islets for transplantation, as well as posttransplantation. Interventions at these different steps to ensure adequate oxygenation have the potential to improve the results of clinical islet transplantation.
  •  
2.
  • Brandhorst, Heide, et al. (författare)
  • New class of oxygen carriers improves islet isolation from long-term stored rat pancreata
  • 2008
  • Ingår i: Transplantation Proceedings. - : Elsevier BV. - 0041-1345 .- 1873-2623. ; 40:2, s. 393-394
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Pancreas shipment is frequently associated with prolonged ischemia deteriorating islet graft function. The strategy to prevent ischemic damage utilizing perfluorodecalin (PFD) for human pancreas oxygenation does not seem to improve isolation outcome. The present study investigated the efficiency of perfluorohexyloctane (F6H8), a hyperoxygen carrier characterized by low specific density (1.33 g/cm3) and lipophilic qualities, to facilitate islet isolation from long-term stored rat pancreata. MATERIALS AND METHODS: Prior to islet isolation, pancreata were intraductally flushed in situ with Kyoto solution (KS) and stored for 24 hours in KS, oxygenated PFD, or F6H8. RESULTS: Islet isolation performed after 24-hour storage in KS failed completely. The intrapancreatic pO2 in PFD- and F6H8-incubated pancreata was almost the same. In correspondence, the ATP content and viability of isolated islets were similar as well. In contrast, islet yield and in vitro function were significantly reduced after storage in PFD compared with F6H8. CONCLUSION: This study suggested that islet isolation performed after long-term pancreas preservation can be significantly improved utilizing semifluorinated alkanes as oxygen carriers.
  •  
3.
  • Brandhorst, Heide, 1962-, et al. (författare)
  • Perfluorohexyloctane improves long-term storage of rat pancreata for subsequent islet isolation
  • 2009
  • Ingår i: Transplant International. - : Frontiers Media SA. - 0934-0874 .- 1432-2277. ; 22:10, s. 1017-1022
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreas oxygenation by means of the hyperoxygen carrier perfluorodecalin (PFD) has been established to prevent ischemically induced damage from cold-stored pancreata. However, large-scale studies did not confirm the promising results that had been observed in smaller donor populations. This study assessed whether islet isolation from pancreata stored for prolonged periods can be improved by utilizing the new oxygen carrier perfluorohexyloctane (F6H8) characterized by lower gravity and higher lipophilicity than PFD. Subsequent to 24 h of storage in either oxygenated PFD or F6H8, the rat pancreata were assessed for the intrapancreatic partial oxygen pressure (pO(2)) and subsequently processed with current standard procedures. The intrapancreatic pO(2) was nearly identical in rat pancreata stored either in PFD or F6H8. Nevertheless, rat islet isolation outcome was significantly increased in terms of yield, integrity, in vitro function and post-transplant outcome after transplantation in diabetic nude mice when F6H8 was used as oxygen carrier. This proof-of-concept study demonstrated in rats that islet isolation performed after long-term storage of oxygenated pancreatic tissue can be significantly improved if PFD was replaced by F6H8.
  •  
4.
  •  
5.
  • Christoffersson, Gustaf, et al. (författare)
  • Clinical and Experimental Pancreatic Islet Transplantation to Striated Muscle : Establishment of a Vascular System Similar to that in Native Islets
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:10, s. 2569-2578
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Curing type 1 diabetes by transplanting pancreatic islets into the liver is associated with poor long-term outcome and graft failure at least partly due to inadequate graft revascularization. The aim of the current study was to evaluate striated muscle as a potential angiogenic site for islet transplantation. Research Design and Methods: The current study presents a new experimental model which is found applicable to clinical islet transplantation. Islets were implanted into striated muscle where after intra-islet vascular density and blood flow were visualized with intravital and confocal microscopy in mice, and by magnetic resonance imaging in three auto-transplanted pancreatectomized patients. Mice were rendered neutropenic by repeated injections of Gr-1 antibody and diabetes was induced by alloxan treatment. Results: Contrary to liver-engrafted islets, islets transplanted to mouse muscle were revascularized with vessel densities and blood flow entirely comparable to islets within intact pancreas. Initiation of islet revascularization at the muscular site was dependent on neutrophils, and the function of islets transplanted to muscle was proven by curing diabetic mice. The experimental data were confirmed in auto-transplanted patients where higher plasma volumes were measured in islets engrafted in forearm muscle compared to adjacent muscle tissue through high-resolution magnetic resonance imaging. Conclusions: This study presents a novel paradigm in islet transplantation whereby recruited neutrophils are crucial for the functionally restored intra-islet blood perfusion following transplantation to striated muscle under experimental and clinical situations.
  •  
6.
  • Danielsson, T, et al. (författare)
  • Resistin increases islet blood flow and decreases subcutaneous adipose tissue blood flow in anaesthetized rats
  • 2009
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 195:2, s. 283-288
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Resistin is an adipokine which has been suggested to participate in the induction of insulin resistance associated with type 2 diabetes. The aim of the present study was to investigate whether acute administration of resistin influences tissue blood perfusion in rats. METHODS: Resistin was administered as an intravenous infusion of 7.5 microg h(-1) (1.5 mL h(-1)) for 30 min to rats anaesthetized with thiobutabarbital. A microsphere technique was used to estimate the blood flow to six different depots of white adipose tissue (WAT), brown adipose tissue (BAT), as well as to the pancreas, islets, duodenum, colon, kidneys, adrenal glands and liver. RESULTS: Resistin administration led to an increased blood flow to the pancreas and islets and a decrease in subcutaneous WAT and BAT. Intra-abdominal white adipose tissue blood flow and that to other organs were not affected. CONCLUSION: Acute administration of resistin markedly affects the blood perfusion of both the pancreas and subcutaneous white adipose tissue depots. At present it is unknown whether resistin exerts a direct effect on the vasculature, or works through local or systemic activation of endothelial cells and/or macrophages. The extent to which this might contribute to the insulin resistance caused by resistin is yet unknown.
  •  
7.
  • Henriksnäs, Johanna, et al. (författare)
  • Acute effects of Helicobacter pylori extracts on gastric mucosal blood flow in the mouse
  • 2009
  • Ingår i: World Journal of Gastroenterology. - : Baishideng Publishing Group Inc.. - 1007-9327 .- 2219-2840. ; 15:2, s. 219-225
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: To investigate the mechanisms underlying the reduction in gastric blood flow induced by a luminal water extract of Helicobacter pylori (HPE).METHODS: The stomachs of isoflurane-anesthetized mice were exteriorized, and the mucosal surface exposed. Blood flow was measured with the laser-Doppler technique, and systemic arterial blood pressure monitored. C57BL/6 mice were exposed to water extract produced from H pylori strain 88-23. To investigate the role of a nerve- or iNOS-mediated pathway, we used intraluminal lidocaine and iNOS-/- mice. Blood flow response to the endogenous nitric oxide synthase inhibitor asymmetric dimethyl arginine (ADMA) was also assessed.RESULTS: In wild-type mice, HPE decreased mucosal blood flow by approximately 30%. This reduction was abolished in iNOS-deficient mice, and by pre-treatment with lidocaine. Luminally applied ADMA resulted in reduction in blood flow similar to that observed in wild-type mice exposed to HPE.CONCLUSION: A H pylori water extract reduces gastric mucosal blood flow acutely through iNOS- and nerve-mediated pathways.
  •  
8.
  • Henriksnäs, Johanna, et al. (författare)
  • An in vivo model for gastric physiological and pathophysiological studies in the mouse
  • 2005
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772 .- 1365-201X. ; 184:2, s. 151-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim:  In vivo models for studying gastrointestinal physiology and pathophysiology are well established in rats. Since a number of genetically modified mice are available there is a need for reliable mouse models. The aim of this project was to develop an in vivo mouse model for gastrointestinal studies. Methods: C57bl/6, NMRI and transgenic FVB/N (expressing human α-1,3/4-fucosyltransferase) mice were anaesthetized with isoflurane and the gastric mucosa exteriorized for intravital microscopy. Acid–base status and acid secretion were measured and blood pressure was continuously monitored. Gastric mucosal blood flow was recorded by laser-Doppler flowmetry. Mucus thickness and accumulation rate were measured with micropipettes. Results: We have developed an in vivo mouse model for studies of the gastric mucosa. With isoflurane anaesthesia the preparation can be studied for up to 5 h with stable blood pressure and mucosal blood flow. Acid–base status agrees with results from other laboratories. Blood flow increased in both C57bl/6 and α1.3/4-FT mice in response to luminal HCl, and the mucus gel could be divided into a firmly and a loosely adherent layer, all comparable with results in the rat. However, the firmly adherent mucus layer was thinner (45 ± 2 μm), and the mucus accumulation rate lower, than in the rat. Furthermore, both basal and stimulated acid secretion showed lower outputs than in the rat. Conclusions: This model has great potential for investigations of gastrointestinal physiology and pathophysiology and can be applied for Helicobacter pylori infection studies.
  •  
9.
  • Henriksnäs, Johanna, 1973- (författare)
  • Helicobacter pylori and Gastric Protection Mechanisms : An in vivo Study in Mice and Rats
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The stomach is frequently exposed to hazardous agents and to resist this harsh environment, several protective mechanisms exist. Of special interest is the gastric pathogen Helicobacter pylori which causes gastritis, ulcers and cancer but the mechanism leading to these diseases are still unclear. However it is very likely that H. pylori negatively influence the protection mechanisms that exist in the stomach. The aims of the present investigation were first to develop an in vivo mouse model in which different protection mechanisms could be studied, and second to investigate the influence of H. pylori on these mechanisms. An in vivo preparation of the gastric mucosa in mice was developed. This preparation allows studies of different gastric mucosal variables and can also be applied for studies in other gastro-intestinal organs. Mice chronically infected with H. pylori, were shown to have a reduced ability of the mucosa to maintain a neutral pH at the epithelial cell surface. This could be due to the thinner inner, firmly adherent mucus gel layer, and/or to defective bicarbonate transport across the epithelium. The Cl-/HCO3- exchanger SLC26A9 was inhibited by NH4+, which also is produced by H. pylori. The mRNA levels of SLC26A9 were upregulated in infected mice, suggesting a way to overcome the inhibition of the transporter. Furthermore, the hyperemic response to acid pH 2 and 1.5 was abolished in these mice. The mechanisms by which the bacteria could alter the blood flow response might involve inhibition of the epithelial iNOS.Water extracts of H. pylori (HPE) reduces the blood flow acutely through an iNOS and nerve-mediated pathway, possibly through the endogenous iNOS inhibitor ADMA. Furthermore, HPE alters the blood flow response to acid as the hyperemic response to acid pH 0.8 is accentuated in mice treated with HPE.
  •  
10.
  • Henriksnäs, Johanna, et al. (författare)
  • Impaired mucus-bicarbonate barrier in Helicobacter pylori-infected mice
  • 2006
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 291:3, s. G396-G403
  • Tidskriftsartikel (refereegranskat)abstract
    • To resist the harsh intrinsic milieu, several lines of defense exist in the stomach. The aim of this study was to investigate the effect of the gastric pathogen Helicobacter pylori on these mechanisms in vivo. We used FVB/N mice expressing human alpha-1,3/4-fucosyl transferase ( producing Lewis b epitopes) and inoculated with H. pylori 1. Mice were anesthetized with isoflurane or Hypnorm-midazolam, the stomach was exteriorized, and the surface of the corpus mucosa was exposed. Mucus thickness was measured with micropipettes, juxtamucosal pH (pH(jm)) was measured with pH-sensitive microelectrodes, blood flow was measured with laser-Doppler flowmetry, and mRNA levels of the bicarbonate transporter SLC26A9 were quantified with real-time PCR. The increase in mucosal blood flow seen in response to luminal acid (pH 1.5) in control animals (140 +/- 9% of control) was abolished in infected mice. The firmly adherent mucus layer was significantly thinner in infected mice (31 +/- 2 mu m) than in control mice (46 +/- 5 mu m), and no mucus accumulation occurred in infected mice. pHjm decreased significantly more on exposure to luminal acid in infected mice ( luminal pH 1.5, pH(jm) 2.4 +/- 0.7) than in control mice (pH(jm) 6.4 +/- 0.5). Despite reduced pHjm, SLC26A9 mRNA expression was significantly, by increased 1.9-fold, in infected mice. The reduction in pH(jm) by infection with H. pylori might be due to a reduced firmly adherent mucus layer, increased mucus permeability to H+, and/or inhibition of bicarbonate transport. The upregulation of SLC26A9 in H. pylori-infected epithelium might be a result of continuous inhibition of the transporter, e. g., by ammonium, a H. pylori product, which has been previously shown to inhibit SLC26A9.
  •  
11.
  • Henriksnäs, Johanna, et al. (författare)
  • Markedly Decreased Blood Perfusion of Pancreatic Islets Transplanted Intraportally Into the Liver : Disruption of Islet Integrity Necessary for Islet Revascularization
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 61:3, s. 665-673
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental studies indicate low revascularization of intraportally transplanted islets. This study aimed to quantify, for the first time, the blood perfusion of intrahepatically transplanted islets and elucidate necessary factors for proper islet graft revascularization at this site. Yellow chameleon protein 3.0 islets expressing fluorescent protein in all cells were transplanted. Graft blood perfusion was determined by microspheres. The vascular density and relative contribution of donor blood vessels in revascularization was evaluated using islets expressing green fluorescent protein under the Tie-2 promoter. Blood perfusion of intrahepatic islets was as a mean only 5% of that of native islets at 1-month posttransplantation. However, there was a marked heterogeneity where blood perfusion was less decreased hi islets transplanted without prior culture and in many cases restored in islets with disrupted integrity. Analysis of vascular density showed that distorted islets were well revascularized, whereas islets still intact at 1-month posttransplantation were almost avascular. Few donor endothelial cells were observed in the new islet vasculature. The very low blood perfusion of intraportally transplanted islets is likely to predispose for ischemia and hamper islet function. Since donor endothelial cells do not expand posttransplantation, disruption of islet integrity is necessary for revascularization to occur by recipient blood vessels.
  •  
12.
  • Karlsson, Michael, et al. (författare)
  • Changes in energy metabolism due to acute rotenone-induced mitochondrial complex I dysfunction – An in vivo large animal model
  • 2016
  • Ingår i: Mitochondrion. - : Elsevier BV. - 1567-7249. ; 31, s. 56-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic crisis is a clinical condition primarily affecting patients with inherent mitochondrial dysfunction in situations of augmented energy demand. To model this, ten pigs received an infusion of rotenone, a mitochondrial complex I inhibitor, or vehicle. Clinical parameters, blood gases, continuous indirect calorimetry, in vivo muscle oxygen tension, ex vivo mitochondrial respiration and metabolomics were assessed. Rotenone induced a progressive increase in blood lactate which was paralleled by an increase in oxygen tension in venous blood and skeletal muscle. There was an initial decrease in whole body oxygen utilization, and there was a trend towards inhibited mitochondrial respiration in platelets. While levels of succinate were decreased, other intermediates of glycolysis and the TCA cycle were increased. This model may be suited for evaluating pharmaceutical interventions aimed at counteracting metabolic changes due to complex I dysfunction.
  •  
13.
  •  
14.
  •  
15.
  • Pettersson, Ulrika, 1981- (författare)
  • Blood Flow Regulation and Inflammatory Response in Experimental Models of Diabetes
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes is caused by defect pancreatic islet β-cells together with peripheral insulin resistance. The disease is often accompanied by obesity with associated low-grade visceral adipose tissue inflammation, which contributes to insulin resistance. As a consequence of, and a possible compensation for the increased insulin demand, blood flow to the pancreatic islets is increased in animal models of diabetes. This increased blood perfusion might with time affect the vascular network as well as β-cells within the islets. This thesis investigates the role of changes of blood perfusion in pancreatic islets and adipose tissues, as well as the recruitment to and composition of leukocyte subpopulations in insulin-sensitive tissues in experimental models of diabetes. Blood flow measurements in islets and adipose tissues of rats and mice were performed using the microsphere technique, while leukocyte recruitment was studied in the mouse cremaster muscle using intravital microscopy. Increased islet blood flow was observed in the GK rat model of type 2 diabetes, which was decreased by acute as well as continuous 2-week inhibition of β3-adrenoceptors without affecting plasma insulin concentrations. Increased inflammatory leukocyte recruitment was observed in both alloxan-induced and high-fat diet-induced diabetes. However, an impaired bacterial clearance was observed in diabetic mice, which was due to impaired phagocytosis. A gender difference was detected in mice fed a high-fat diet, since obese female mice did not show increased levels of pro-inflammatory circulatory markers or inflammatory leukocytes in the adipose tissue. The main effector cell in the adipose tissue inflammation in high-fat-fed male mice seemed to be the pro-inflammatory macrophage. The Treg population in adipose tissue was increased in female mice, but remained unchanged in male mice on high-fat diet. In conclusion, increased islet blood flow in type 2 diabetes could be reversed by β3-adrenoceptor inhibition, which may maintain islet function. The diabetes-associated hyperglycemia activated leukocytes but impaired their phagocytic ability. High-fat-fed female mice showed less peripheral inflammation due to a smaller number of recruited inflammatory macrophages and a high-fat diet-induced Treg population in intra-abdominal adipose tissues.
  •  
16.
  • Pettersson, Ulrika S., et al. (författare)
  • Endothelin-1 Markedly Decreases the Blood Perfusion of Transplanted Pancreatic Islets in Rats
  • 2011
  • Ingår i: Transplantation Proceedings. - : Elsevier BV. - 0041-1345 .- 1873-2623. ; 43:5, s. 1815-1820
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Transplantation of insulin-producing beta-cells is the only available curative treatment for type 1 diabetes. However, graft function declines within the first years after transplantation, which may reflect inadequate vascular engraftment. Endothelin-1 (ET-1) is a potent vasoconstrictor whose production is regulated by both hypoxia and inflammation. Moreover, the plasma concentration of ET-1 is elevated in patients with type 1 diabetes. The aim of this study was to investigate the gene expression and effects of ET-1 and its 2 receptor antagonists, BQ123 and BQ788, on blood flow in syngeneic rat islet transplants. Methods. Pancreatic islets from Wistar Furth rats were isolated and transplanted syngeneically under the kidney capsule. Transplant and kidney cortex blood flow was measured using laser Doppler flowmetry after administration of ET-1 via topical application, or after administration of BQ123 and BQ788 intravenously. The grafts and isolated islets were analyzed for mRNA expression of ET-1, ETA receptor, ETB receptor, and endothelin-converting enzyme 1 using by reverse-transcription polymerase chain reaction. Results. ET-1 markedly decreased transplant blood flow (77.5 +/- 4.4% 1 minute after administration; n = 6), whereas neither BQ123 nor BQ788 had vascular effects. No differences in relative gene expression between the grafts and freshly isolated control islets were seen for ET-1 (0.65 +/- 0.14 [n = 8] vs 0.79 +/- 0.24 [n = 5]), ETA receptor (0.37 +/- 0.14 [n = 8] vs 0.25 +/- 0.04 [n =5]), ETB receptor (4.78 +/- 1.43 [n = 8] vs 1.94 +/- 0.32 [n = 5]), or endothelin converting enzyme 1 (7.25 +/- 1.88 [n = 8] vs 11.83 +/- 0.95 [n = 5]) when expressed as 2-ct. Conclusion. Exogenous ET-1 strongly affects the blood perfusion of transplanted islets, and endogenous levels can, if up-regulated, contribute to graft failure.
  •  
17.
  • Pettersson, Ulrika Sofia, et al. (författare)
  • Increased Recruitment but Impaired Function of Leukocytes during Inflammation in Mouse Models of Type 1 and Type 2 Diabetes
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:7, s. e22480-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPatients suffering from diabetes show defective bacterial clearance. This study investigates the effects of elevated plasma glucose levels during diabetes on leukocyte recruitment and function in established models of inflammation.Methodology/Principal FindingsDiabetes was induced in C57Bl/6 mice by intravenous alloxan (causing severe hyperglycemia), or by high fat diet (moderate hyperglycemia). Leukocyte recruitment was studied in anaesthetized mice using intravital microscopy of exposed cremaster muscles, where numbers of rolling, adherent and emigrated leukocytes were quantified before and during exposure to the inflammatory chemokine MIP-2 (0.5 nM). During basal conditions, prior to addition of chemokine, the adherent and emigrated leukocytes were increased in both alloxan- (62±18% and 85±21%, respectively) and high fat diet-induced (77±25% and 86±17%, respectively) diabetes compared to control mice. MIP-2 induced leukocyte emigration in all groups, albeit significantly more cells emigrated in alloxan-treated mice (15.3±1.0) compared to control (8.0±1.1) mice. Bacterial clearance was followed for 10 days after subcutaneous injection of bioluminescent S. aureus using non-invasive IVIS imaging, and the inflammatory response was assessed by Myeloperoxidase-ELISA and confocal imaging. The phagocytic ability of leukocytes was assessed using LPS-coated fluorescent beads and flow cytometry. Despite efficient leukocyte recruitment, alloxan-treated mice demonstrated an impaired ability to clear bacterial infection, which we found correlated to a 50% decreased phagocytic ability of leukocytes in diabetic mice.Conclusions/SignificanceThese results indicate that reduced ability to clear bacterial infections observed during experimentally induced diabetes is not due to reduced leukocyte recruitment since sustained hyperglycemia results in increased levels of adherent and emigrated leukocytes in mouse models of type 1 and type 2 diabetes. Instead, decreased phagocytic ability observed for leukocytes isolated from diabetic mice might account for the impaired bacterial clearance.
  •  
18.
  • Pettersson, U. S., et al. (författare)
  • Reversal of high pancreatic islet and white adipose tissue blood flow in type 2 diabetic GK rats by administration of the beta(3)-adrenoceptor inhibitor SR-59230A
  • 2009
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 297:2, s. E490-E494
  • Tidskriftsartikel (refereegranskat)abstract
    • Pettersson US, Henriksnas J, Jansson L. Reversal of high pancreatic islet and white adipose tissue blood flow in type 2 diabetic GK rats by administration of the beta(3)-adrenoceptor inhibitor SR-59230A. Am J Physiol Endocrinol Metab 297: E490-E494, 2009. First published June 2, 2009; doi: 10.1152/ajpendo.00140.2009.-Previous studies have shown that the Goto-Kakizaki (GK) rat, a nonobese type 2 diabetes model, has an increased white adipose tissue (WAT) and islet blood flow when compared with control rats. The aim of the study was to examine if these increased blood flow values in GK rats could be affected by the beta(3)-adrenoceptor antagonist SR-59230A. We measured organ blood flow with a microsphere technique 10 min after administration of SR-59230A (1 mg/kg body wt), or the corresponding volume of 0.9% NaCl solution (1 ml/kg body wt) in rats anaesthetized with thiobutabarbital. The GK rat had an increased blood flow in all intra-abdominal adipose tissue depots except for the sternal fat pad compared with Wistar-Furth (WF) rats. However, no differences were seen in the blood perfusion of subcutaneous white or brown adipose tissue. The blood flow was also increased in both the pancreas and in the islets in the GK rat compared with WF rats. SR-59230A treatment affected neither WAT nor pancreatic blood flow in WF rats. In GK rats, on the other hand, SR-59230A decreased both WAT and islet blood flow values to values similar to those seen in control WF rats. The whole pancreatic blood flow was not affected by SR-59230A administration in GK rats. Interestingly, the brown adipose tissue blood flow in GK rats increased after SR-59230A administration. These results suggest that beta(3)-adrenoceptors are involved in regulation of blood flow both in islet and in adipose tissue.
  •  
19.
  • Phillipson, Mia, et al. (författare)
  • Inducible nitric oxide synthase is involved in acid-induced gastric hyperemia in rats and mice
  • 2003
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 285:1, s. G154-G162
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of different isoforms of nitric oxide synthase (NOS) in the gastric mucosal hyperemia, induced by 155 mM luminal hydrochloric acid (pH approximately 0.8) without a barrier breaker, was investigated. Rats were anesthetized with Inactin (120 mg/kg ip), and mice were anesthetized with Forene (2.2% in 40% oxygen gas at 150 ml/min); the gastric mucosa was exteriorized. Gastric mucosal blood flow was measured with laser-Doppler flowmetry (LDF) in rats treated with Nomega-nitro-l-arginine (l-NNA; unspecific NOS inhibitor), l-N6-(1-iminoethyl)lysine [l-NIL; inducible (i) NOS inhibitor], or S-methyl-l-thiocitrulline [SMTC; neuronal (n) NOS inhibitor], 10 mg/kg, followed by 3 mg. kg-1. h-1 iv, in iNOS-deficient (-/-) and nNOS(-/-) mice. mRNA was isolated from the gastric mucosa in iNOS(-/-) and wild-type (wt) mice, and real-time RT-PCR was performed. The effect of 155 mM acid on gastric mucosal permeability was determined by measuring the clearance of 51Cr-EDTA from blood to lumen. LDF increased by 48 +/- 13% during 155 mM HCl luminally, an increase that was abolished by l-NNA, SMTC, or l-NIL. In iNOS wt mice, LDF increased by 33 +/- 8% during luminal acid. The blood flow increase was attenuated substantially in iNOS(-/-) mice. RT-PCR revealed iNOS mRNA expression in the gastric mucosa in the iNOS wt groups. The blood flow increase in response to acid was not abolished in nNOS(-/-) mice (nNOS-sufficient mice, 39 +/- 18%; heterozygous mice, 25 +/- 19%; -/- mice, 19 +/- 7%). Mucosal permeability was transiently increased during 155 mM HCl. The results suggest that iNOS is constitutively expressed in the gastric mucosa and is involved in acid-induced hyperemia, suggesting a novel role for iNOS in gastric mucosal protection.
  •  
20.
  •  
21.
  • Phillipson, Mia, et al. (författare)
  • The gastric mucus layers: constituents and regulation of accumulation.
  • 2008
  • Ingår i: American journal of physiology. Gastrointestinal and liver physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 295:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The mucus layer continuously covering the gastric mucosa consists of a loosely adherent layer that can be easily removed by suction, leaving a firmly adherent mucus layer attached to the epithelium. These two layers exhibit different gastroprotective roles; therefore, individual regulation of thickness and mucin composition were studied. Mucus thickness was measured in vivo with micropipettes in anesthetized mice [isoflurane; C57BL/6, Muc1-/-, inducible nitric oxide synthase (iNOS)-/-, and neuronal NOS (nNOS)-/-] and rats (inactin) after surgical exposure of the gastric mucosa. The two mucus layers covering the gastric mucosa were differently regulated. Luminal administration of PGE(2) increased the thickness of both layers, whereas luminal NO stimulated only firmly adherent mucus accumulation. A new gastroprotective role for iNOS was indicated since iNOS-deficient mice had thinner firmly adherent mucus layers and a lower mucus accumulation rate, whereas nNOS did not appear to be involved in mucus secretion. Downregulation of gastric mucus accumulation was observed in Muc1-/- mice. Both the firmly and loosely adherent mucus layers consisted of Muc5ac mucins. In conclusion, this study showed that, even though both the two mucus layers covering the gastric mucosa consist of Muc5ac, they are differently regulated by luminal PGE(2) and NO. A new gastroprotective role for iNOS was indicated since iNOS-/- mice had a thinner firmly adherent mucus layer. In addition, a regulatory role of Muc1 was demonstrated since downregulation of gastric mucus accumulation was observed in Muc1-/- mice.
  •  
22.
  • Phillipson, Mia, et al. (författare)
  • The importance of mucus layers and bicarbonate transport in preservation of gastric juxtamucosal pH
  • 2002
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 282:2, s. G211-G219
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucus thickness is suggested to be related to mucosal protection. We therefore investigated the importance of the removable mucous layer and epithelial bicarbonate transport in preservation of the gastric juxtamucosal pH (pH(jm)) during luminal acid. Anesthetized rats were prepared for intravital microscopy of the gastric mucosa, and pH(jm) was measured with pH-sensitive microelectrodes. The mucus was either left intact (IM) or removed (MR) down to the firmly attached mucous layer, and HCl (pH 1) was applied luminally. Removal of the loosely adherent mucous layer did not influence the pH(jm) during luminal acid (pentagastrin: IM/MR 7.03 +/- 0.09/6.82 +/- 0.19; pentagastrin + indomethacin: IM/MR 6.89 +/- 0.20/6.95 +/- 0.27; ranitidine: IM/MR 2.38 +/- 0.64/2.97 +/- 0.62), unless prostaglandin synthesis and acid secretion were inhibited (ranitidine + indomethacin: IM/MR 2.03 +/- 0.37/1.66 +/- 0.18). Neutral pH(jm) is maintained during endogenous acid secretion and luminal pH 1, unless DIDS was applied luminally, which resulted in a substantially decreased pH(jm) (1.37 +/- 0.21). Neutral pH(jm) is maintained by a DIDS-sensitive bicarbonate transport over the surface epithelium. The loosely adherent mucous layer only contributes to maintaining pH(jm) during luminal pH 1 if acid secretion and prostaglandin synthesis are inhibited.
  •  
23.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy