SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henrissat Bernard) "

Sökning: WFRF:(Henrissat Bernard)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lombard, Vincent, et al. (författare)
  • A hierarchical classification of polysaccharide lyases for glycogenomics
  • 2010
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 432, s. 437-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate-active enzymes face huge substrate diversity in a highly selective manner using only a limited number of available folds. They are therefore subjected to multiple divergent and convergent evolutionary events. This and their frequent modularity render their functional annotation in genomes difficult in a number of cases. In the present paper, a classification of polysaccharide lyases (the enzymes that cleave polysaccharides using an elimination instead of a hydrolytic mechanism) is shown thoroughly for the first time. Based on the analysis of a large panel of experimentally characterized polysaccharide lyases, we examined the correlation of various enzyme properties with the three levels of the classification: fold, family and subfamily. The resulting hierarchical classification, which should help annotate relevant genes in genomic efforts, is available and constantly updated at the Carbohydrate-Active Enzymes Database (http://www.cazy.org).
  •  
2.
  • Aspeborg, Henrik, 1970-, et al. (författare)
  • Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)
  • 2012
  • Ingår i: BMC Evolutionary Biology. - : Springer Nature. - 1471-2148. ; 12:1, s. 186-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on beta-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. Results: About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Conclusion: Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at http://www.cazy.org/GH5.html.
  •  
3.
  • Babbitt, Patricia C., et al. (författare)
  • Creating a specialist protein resource network : a meeting report for the protein bioinformatics and community resources retreat
  • 2015
  • Ingår i: Database. - : Oxford University Press (OUP). - 1758-0463.
  • Tidskriftsartikel (refereegranskat)abstract
    • During 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue.
  •  
4.
  • Cenci, Ugo, et al. (författare)
  • Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids
  • 2018
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea-the first for any goniomonad-to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. Results: We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is similar to 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. Conclusion: We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic "rewiring" that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae.
  •  
5.
  • Curtis, Bruce A., et al. (författare)
  • Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 492:7427, s. 59-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host-and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
  •  
6.
  •  
7.
  • Erickson, Alison R, et al. (författare)
  • Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease
  • 2012
  • Ingår i: PLOS ONE. - San Francisco : Public Library Science. - 1932-6203. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.
  •  
8.
  • Geisler-Lee, Jane, et al. (författare)
  • Poplar carbohydrate-active enzymes. Gene identification and expression analyses.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 140:3, s. 946-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Over 1,600 genes encoding carbohydrate-active enzymes (CAZymes) in the Populus trichocarpa (Torr. & Gray) genome were identified based on sequence homology, annotated, and grouped into families of glycosyltransferases, glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, and expansins. Poplar (Populus spp.) had approximately 1.6 times more CAZyme genes than Arabidopsis (Arabidopsis thaliana). Whereas most families were proportionally increased, xylan and pectin-related families were underrepresented and the GT1 family of secondary metabolite-glycosylating enzymes was overrepresented in poplar. CAZyme gene expression in poplar was analyzed using a collection of 100,000 expressed sequence tags from 17 different tissues and compared to microarray data for poplar and Arabidopsis. Expression of genes involved in pectin and hemicellulose metabolism was detected in all tissues, indicating a constant maintenance of transcripts encoding enzymes remodeling the cell wall matrix. The most abundant transcripts encoded sucrose synthases that were specifically expressed in wood-forming tissues along with cellulose synthase and homologs of KORRIGAN and ELP1. Woody tissues were the richest source of various other CAZyme transcripts, demonstrating the importance of this group of enzymes for xylogenesis. In contrast, there was little expression of genes related to starch metabolism during wood formation, consistent with the preferential flux of carbon to cell wall biosynthesis. Seasonally dormant meristems of poplar showed a high prevalence of transcripts related to starch metabolism and surprisingly retained transcripts of some cell wall synthesis enzymes. The data showed profound changes in CAZyme transcriptomes in different poplar tissues and pointed to some key differences in CAZyme genes and their regulation between herbaceous and woody plants.
  •  
9.
  • Gentekaki, Eleni, et al. (författare)
  • Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
  • 2017
  • Ingår i: PLoS biology. - : PUBLIC LIBRARY SCIENCE. - 1544-9173 .- 1545-7885. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize alpha-glucans rather than beta-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
  •  
10.
  • Ipcho, Simon V S, et al. (författare)
  • Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability.
  • 2012
  • Ingår i: Molecular Plant Pathology. - : Wiley. - 1464-6722. ; 13:6, s. 531-545
  • Tidskriftsartikel (refereegranskat)abstract
    • The wheat pathogen Stagonospora nodorum, causal organism of the wheat disease Stagonospora nodorum blotch, has emerged as a model for the Dothideomycetes, a large fungal taxon that includes many important plant pathogens. The initial annotation of the genome assembly included 16 586 nuclear gene models. These gene models were used to design a microarray that has been interrogated with labelled transcripts from six cDNA samples: four from infected wheat plants at time points spanning early infection to sporulation, and two time points taken from growth in artificial media. Positive signals of expression were obtained for 12 281 genes. This represents strong corroborative evidence of the validity of these gene models. Significantly differential expression between the various time points was observed. When infected samples were compared with axenic cultures, 2882 genes were expressed at a higher level in planta and 3630 were expressed more highly in vitro. Similar numbers were differentially expressed between different developmental stages. The earliest time points in planta were particularly enriched in differentially expressed genes. A disproportionate number of the early expressed gene products were predicted to be secreted, but otherwise had no obvious sequence homology to functionally characterized genes. These genes are candidate necrotrophic effectors. We have focused attention on genes for carbohydrate metabolism and the specific biosynthetic pathways active during growth in planta. The analysis points to a very dynamic adjustment of metabolism during infection. Functional analysis of a gene in the coenzyme A biosynthetic pathway showed that the enzyme was dispensable for growth, indicating that a precursor is supplied by the plant.
  •  
11.
  •  
12.
  • Karlsson, Magnus, et al. (författare)
  • Insights on the Evolution of Mycoparasitism from the Genome of Clonostachys rosea
  • 2015
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 7:2, s. 465-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Clonostachys rosea is a mycoparasitic fungus that can control several important plant diseases. Here, we report on the genome sequencing of C. rosea and a comparative genome analysis, in order to resolve the phylogenetic placement of C. rosea and to study the evolution of mycoparasitism as a fungal lifestyle. The genome of C. rosea is estimated to 58.3 Mb, and contains 14,268 predicted genes. A phylogenomic analysis shows that C. Tosco clusters as sister taxon to plant pathogenic Fusarium species, with mycoparasitic/saprotrophic Tfichoderma species in an ancestral position. A comparative analysis of gene family evolution reveals several distinct differences between the included mycoparasites. Clonostachys rosea contains significantly more ATP-binding cassette (ABC) transporters, polyketide synthases, cytochrome P450 monooxygenases, pectin lyases, glucose-methanol-choline oxidoreductases, and lytic polysaccharide monooxygenases compared with other fungi in the Hypocreales. Interestingly, the increase of ABC transporter gene number in C. rosea is associated with phylogenetic subgroups B (multidrug resistance proteins) and G (pleiotropic drug resistance transporters), whereas an increase in subgroup C (multidrug resistance-associated proteins) is evident in Tfichoderma virens. In contrast with mycoparasitic Tfichoderma species, C. rosea contains very few chitinases. Expression of six group B and group G ABC transporter genes was induced in C. rosea during exposure to the Fusafium mycotoxin zearalenone, the fungicide Boscalid or metabolites from the biocontrol bacterium Pseudomonas chiororaphis. The data suggest that tolerance toward secondary metabolites is a prominent feature in the biology of C. rosea.
  •  
13.
  • Kohler, Annegret, et al. (författare)
  • Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:4, s. 176-410
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.
  •  
14.
  • Kumar, Vikash, et al. (författare)
  • Poplar carbohydrate-active enzymes : whole-genome annotation and functional analyses based on RNA expression data
  • 2019
  • Ingår i: The Plant Journal. - Hoboken : John Wiley & Sons. - 0960-7412 .- 1365-313X. ; 99:4, s. 589-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database () for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
  •  
15.
  • Liu, Qiyong P., et al. (författare)
  • Bacterial glycosidases for the production of universal red blood cells
  • 2007
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1546-1696 .- 1087-0156. ; 25:4, s. 454-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymatic removal of blood group ABO antigens to develop universal red blood cells ( RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating this technology to clinical practice has been the lack of efficient glycosidase enzymes. Here we report two bacterial glycosidase gene families that provide enzymes capable of efficient removal of A and B antigens at neutral pH with low consumption of recombinant enzymes. The crystal structure of a member of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD(+). The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions.
  •  
16.
  • Liu, Qiyong P, et al. (författare)
  • Identification of a GH110 subfamily of alpha 1,3-galactosidases - Novel enzymes for removal of the alpha 3Gal xenotransplantation antigen
  • 2008
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 283:13, s. 8545-8554
  • Tidskriftsartikel (refereegranskat)abstract
    • In search of alpha-galactosidases with improved kinetic properties for removal of the immunodominant alpha 1,3-linked galactose residues of blood group B antigens, we recently identified a novel prokaryotic family of alpha-galactosidases (CAZy GH110) with highly restricted substrate specificity and neutral pH optimum (Liu, Q. P., Sulzenbacher, G., Yuan, H., Bennett, E. P., Pietz, G., Saunders, K., Spence, J., Nudelman, E., Levery, S. B., White, T., Neveu, J. M., Lane, W. S., Bourne, Y., Olsson, M. L., Henrissat, B., and Clausen, H. (2007) Nat. Biotechnol. 25, 454-464). One member of this family from Bacteroides fragilis had exquisite substrate specificity for the branched blood group B structure Gal alpha 1-3(Fuc alpha 1-2) Gal, whereas linear oligosaccharides terminated by alpha 1,3-linked galactose such as the immunodominant xenotransplantation epitope Gal alpha 1-3Gal beta 1-4GlcNAc did not serve as substrates. Here we demonstrate the existence of two distinct subfamilies of GH110 in B. fragilis and thetaiotaomicron strains. Members of one subfamily have exclusive specificity for the branched blood group B structures, whereas members of a newly identified subfamily represent linkage specific alpha 1,3-galactosidases that act equally well on both branched blood group B and linear alpha 1,3Gal structures. We determined by one-dimensional H-1 NMR spectroscopy that GH110 enzymes function with an inverting mechanism, which is in striking contrast to all other known alpha-galactosidases that use a retaining mechanism. The novel GH110 subfamily offers enzymes with highly improved performance in enzymatic removal of the immunodominant alpha 3Gal xenotransplantation epitope.
  •  
17.
  • Ma, Li-Jun, et al. (författare)
  • Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 464:7287, s. 367-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
  •  
18.
  • Matos, Marina N., et al. (författare)
  • Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments
  • 2016
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 18:12, s. 4471-4484
  • Tidskriftsartikel (refereegranskat)abstract
    • Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate degradation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The aim of this work was to gain a better understanding of alginate utilization capabilities in cold coastal environments. Sediment metagenomes from four high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homologue sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including members of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments showed distinct structures with a higher proportion of novel genes. Examination of the gene neighbourhood of the alginate lyase homologues revealed distinct patterns depending on the potential lineage of the scaffolds, with evidence of evolutionary relationships among alginolytic gene clusters from Bacteroidetes and Proteobacteria. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.
  •  
19.
  • Montanier, Cedric Y., et al. (författare)
  • A novel, noncatalytic carbohydrate-binding module displays specificity for galactose-containing polysaccharides through calcium-mediated oligomerization
  • 2011
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 286:25
  • Tidskriftsartikel (refereegranskat)abstract
    • The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate. A powerful plant cell wall-degrading system is the Clostridium thermocellum multienzyme complex, termed the "cellulosome." Here, we identify a novel CBM (CtCBM62) within the large C. thermocellum cellulosomal protein Cthe_2193 (defined as CtXyl5A), which establishes a new CBM family. Phylogenetic analysis of CBM62 members indicates that a circular permutation occurred within the family. CtCBM62 binds to D-galactose and L-arabinopyranose in either anomeric configuration. The crystal structures of CtCBM62, in complex with oligosaccharides containing alpha- and beta-galactose residues, show that the ligand-binding site in the beta-sandwich protein is located in the loops that connect the two beta-sheets. Specificity is conferred through numerous interactions with the axial O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars located in plant cell walls. CtCBM62 displays tighter affinity for multivalent ligands compared with molecules containing single galactose residues, which is associated with precipitation of these complex carbohydrates. These avidity effects, which confer the targeting of polysaccharides, are mediated by calcium-dependent oligomerization of the CBM.
  •  
20.
  • Schoville, Sean D., et al. (författare)
  • A model species for agricultural pest genomics : The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.
  •  
21.
  •  
22.
  • Svartström, Olov, et al. (författare)
  • Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation
  • 2017
  • Ingår i: The ISME Journal. - : Nature Publishing Group. - 1751-7362 .- 1751-7370. ; 11:11, s. 2538-2551
  • Tidskriftsartikel (refereegranskat)abstract
    • The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes and were overall overrepresented in the moose microbiome compared with other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci, which has never been reported before. The almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.
  •  
23.
  •  
24.
  • Taillefer, Marcel, 1987, et al. (författare)
  • Mapping the Enzyme Machineries of Cellulolytic Soil-Dwelling Bacteroidetes
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Bacteria from the phylum Bacteroidetes are regarded as proficient degraders of complex carbohydrates, but most species are limited to soluble glycans, e.g. hemicelluloses and pectins. Two aerobic Bacteroidetes members, Cytophaga hutchinsonii and Sporocytophaga myxococcoides , have however been known as proficient cellulose metabolizers for decades, but do not conform to the known mechanisms of enzymatic cellulose conversion. Neither species encodes cellobiohydrolases or lytic polysaccharide monooxygenases, and no apparent   complexed systems such as cellulosomes have been identified.   Many Bacteroidetes species utilize so-called polysaccharide utilization loci (PULs) which encode the necessary enzymes, binding proteins, sugar transporters and regulatory elements for target polysaccharides, but also these are absent in the genomes of C. hutchinsonii and S. myxococcoides . Mutagenesis studies instead point toward the Type IX secretion system being a crucial factor in polysaccharide turnover, and it is also tightly linked to their rapid gliding motility. In order to shed light on the enigmatic cellulolytic systems of these bacteria, we have used quantitative proteomics to map which proteins they produce during growth on cellulose and pectin, respectively, and determined the proteins’ cellular locations. Both bacteria produced similar yet distinct arrays of mostly unstudied putative cellulases during growth, and interestingly, cellulolytic activity was detected not only in the extracellular fraction and outer membrane but also intracellularly. In addition, several glycoside hydrolase family 8 (GH8) enzymes, that have previously been overlooked as potential cellulases in these species, were found to be both abundant and selectively produced during growth on cellulose. These GH8-containing proteins, which comprise large regions of unknown function and range between ~1100-2800 amino acids in total, are currently being functionally characterized to clarify their roles in cellulose turnover.
  •  
25.
  • Taillefer, Marcel, 1987, et al. (författare)
  • Proteomic Dissection of the Cellulolytic Machineries Used by Soil-Dwelling Bacteroidetes
  • 2018
  • Ingår i: mSystems. - 2379-5077. ; 3:6, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT Bacteria of the phylum  Bacteroidetes  are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. The soil  Bacteroidetes  species Cytophaga hutchinsonii and Sporocytophaga myxococcoides have long been known as efficient cellulose metabolizers, but neither species conforms to known cellulolytic mechanisms. Both species require contact with their substrate but do not encode cellulosomal systems of cell surface-attached enzyme complexes or the polysaccharide utilization loci found in many other  Bacteroidetes  species. Here, we have fractionated the cellular compartments of each species from cultures growing on crystalline cellulose and pectin, respectively, and analyzed them using label-free quantitative proteomics as well as enzymatic activity assays. The combined results enabled us to highlight enzymes likely to be important for cellulose conversion and to infer their cellular localization. The combined proteomes represent a wide array of putative cellulolytic enzymes and indicate specific and yet highly redundant mechanisms for cellulose degradation. Of the putative endoglucanases, especially enzymes of hitherto-unstudied glycoside hydrolase family, 8 were abundant, indicating an overlooked important role during cellulose metabolism. Furthermore, both species generated a large number of abundant hypothetical proteins during cellulose conversion, providing a treasure trove of targets for future enzymology studies.  IMPORTANCE Cellulose is the most abundant renewable polymer on earth, but its recalcitrance limits highly efficient conversion methods for energy-related and material applications. Though microbial cellulose conversion has been studied for decades, recent advances showcased that large knowledge gaps still exist. Bacteria of the phylum  Bacteroidetes  are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. A few species, including the soil bacteria C. hutchinsonii and S. myxococcoides , are regarded as cellulose specialists, but their cellulolytic mechanisms are not understood, as they do not conform to the current models for enzymatic cellulose turnover. By unraveling the proteome setups of these two bacteria during growth on both crystalline cellulose and pectin, we have taken a significant step forward in understanding their idiosyncratic mode of cellulose conversion. This report provides a plethora of new enzyme targets for improved biomass conversion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25
Typ av publikation
tidskriftsartikel (22)
konferensbidrag (2)
annan publikation (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Henrissat, Bernard (25)
Coutinho, Pedro M. (5)
Larsbrink, Johan, 19 ... (3)
Archibald, John M. (3)
Curtis, Bruce A. (3)
Pope, Phillip B. (3)
visa fler...
Johansson, Tomas (2)
Sjöling, Sara (2)
Gilbert, Harry J (2)
Kim, Eunsoo (2)
Olsson, Martin L (2)
Ahrén, Dag (2)
Tunlid, Anders (2)
Brumer, Harry (2)
Canbäck, Björn (2)
Roger, Andrew J (2)
Teeri, Tuula T. (2)
Jansson, Janet K (2)
Salamov, Asaf (2)
Grigoriev, Igor V. (2)
Hibbett, David S. (2)
Floudas, Dimitrios (2)
Shah, Firoz (2)
Hoffmeister, Dirk (2)
Martin, Francis (2)
Eme, Laura (2)
Bennett, Eric P. (2)
Clausen, Henrik (2)
Rineau, Francois (2)
Arias, Maria C. (2)
Ball, Steven G. (2)
Kuo, Alan (2)
Elias, Marek (2)
Herman, Emily K. (2)
Klute, Mary J. (2)
Coutinho, Pedro (2)
Dacks, Joel B. (2)
Malik, Shehre-Banoo (2)
Lozada, Mariana (2)
Carroll, Jolynn (2)
Lundgren, Leif (2)
Mellerowicz, Ewa J (2)
Lackner, Gerald (2)
Levasseur, Anthony (2)
Lee, Yong-Hwan (2)
Levery, Steven B (2)
Liu, Qiyong P. (2)
Sulzenbacher, Gerlin ... (2)
Yuan, Huaiping (2)
Pietz, Greg (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (6)
Lunds universitet (6)
Uppsala universitet (5)
Sveriges Lantbruksuniversitet (4)
Chalmers tekniska högskola (3)
Umeå universitet (2)
visa fler...
Stockholms universitet (2)
Mittuniversitetet (2)
Södertörns högskola (2)
Örebro universitet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Medicin och hälsovetenskap (5)
Teknik (4)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy