SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Herbel Jörg) "

Sökning: WFRF:(Herbel Jörg)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adlmann, Franz, et al. (författare)
  • Depth resolved grazing incidence neutron scattering experiments from semi-infinite interfaces : a statistical analysis of the scattering contributions
  • 2018
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 0953-8984 .- 1361-648X. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.
  •  
2.
  • Tortorelli, Luca, et al. (författare)
  • The PAU Survey : a forward modeling approach for narrow-band imaging
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • Weak gravitational lensing is a powerful probe of the dark sector, once measurement systematic errors can be controlled. In [1], a calibration method based on forward modeling, called MCCL, was proposed. This relies on fast image simulations (e.g., UFig [2, 3]) that capture the key features of galaxy populations and measurement effects. The MCCL approach has been used in [4] to determine the redshift distribution of cosmological galaxy samples and, in the process, the authors derived a model for the galaxy population mainly based on broad-band photometry. Here, we test this model by forward modeling the 40 narrow-band photometry given by the novel PAU Survey (PAUS). For this purpose, we apply the same forced photometric pipeline on data and simulations using Source Extractor [5]. The image simulation scheme performance is assessed at the image and at the catalogues level. We find good statistical agreement for the distribution of pixel values, for the magnitude-size relation and for the inter-band correlations. We also discuss the small residual differences in the magnitude distributions. A principal component analysis is then performed, in order to derive a global comparison of the narrow-band photometry between the data and the simulations. We use a 'mixing' matrix to quantify the agreement between the observed and simulated sets of Principal Components (PCs). We find good agreement, especially for the first three most significant PCs. We also compare the coefficients of the PCs decomposition. While there are slight differences for some coefficients, we find that the distributions are consistent. Together, our results show that the galaxy population model derived from broad-band photometry is in good overall agreement with the PAUS data. This offers good prospects for incorporating spectral information to the galaxy model by adjusting it to the PAUS narrow-band data using forward modeling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy