SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Herland Anna) "

Sökning: WFRF:(Herland Anna)

  • Resultat 1-50 av 93
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rogal, Julia, et al. (författare)
  • Human In Vitro Models of Neuroenergetics and Neurometabolic Disturbances: Current Advances and Clinical Perspectives
  • 2024
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press. - 2157-6564 .- 2157-6580. ; 13:6, s. 505-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurological conditions conquer the world; they are the leading cause of disability and the second leading cause of death worldwide, and they appear all around the world in every age group, gender, nationality, and socioeconomic class. Despite the growing evidence of an immense impact of perturbations in neuroenergetics on overall brain function, only little is known about the underlying mechanisms. Especially human insights are sparse, owing to a shortage of physiologically relevant model systems. With this perspective, we aim to explore the key steps and considerations involved in developing an advanced human in vitro model for studying neuroenergetics. We discuss biological and technological strategies to meet the requirements of a predictive model, aiming at providing a guide and inspiration for future in vitro models of neuroenergetics.
  •  
2.
  • Delsing, Louise, et al. (författare)
  • Barrier properties and transcriptome expression in human iPSC-derived models of the blood-brain barrier
  • 2018
  • Ingår i: Stem Cells. - : AlphaMed Press, Inc.. - 1066-5099 .- 1549-4918. ; 36:12, s. 1816-1827
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-based models of the blood-brain barrier (BBB) are important for increasing the knowledge of BBB formation, degradation and brain exposure of drug substances. Human models are preferred over animal models because of inter-species differences in BBB structure and function. However, access to human primary BBB tissue is limited and has shown degeneration of BBB functions in vitro. Human induced pluripotent stem cells (iPSCs) can be used to generate relevant cell types to model the BBB with human tissue. We generated a human iPSC-derived model of the BBB that includes endothelial cells in co-culture with pericytes, astrocytes and neurons. Evaluation of barrier properties showed that the endothelial cells in our co-culture model have high transendothelial electrical resistance, functional efflux and ability to discriminate between CNS permeable and non-permeable substances. Whole genome expression profiling revealed transcriptional changes that occur in co-culture, including upregulation of tight junction proteins such as claudins and neurotransmitter transporters. Pathway analysis implicated changes in the WNT, TNF and PI3K-Akt pathways upon co-culture. Our data suggests that co-culture of iPSC-derived endothelial cells promotes barrier formation on a functional and transcriptional level. The information about gene expression changes in co-culture can be used to further improve iPSC-derived BBB models through selective pathway manipulation.
  •  
3.
  • Jain, Saumey, et al. (författare)
  • On-Chip Neural Induction Boosts Neural Stem Cell Commitment : Toward a Pipeline for iPSC-Based Therapies
  • 2024
  • Ingår i: Advanced science (Weinheim, Baden-Wurttemberg, Germany). - : Wiley-VCH Verlagsgesellschaft. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.
  •  
4.
  • Lundin, Anders, et al. (författare)
  • hiPS-Derived Astroglia Model Shows Temporal Transcriptomic Profile Related to Human Neural Development and Glia Competence Acquisition of a Maturing Astrocytic Identity
  • 2020
  • Ingår i: Advanced Biosystems. - : Wiley. - 2366-7478. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrocyte biology has a functional and cellular diversity only observed in humans. The understanding of the regulatory network governing outer radial glia (RG), responsible for the expansion of the outer subventricular zone (oSVZ), and astrocyte cellular development remains elusive, partly since relevant human material to study these features is not readily available. A human-induced pluripotent stem cell derived astrocytic model, NES-Astro, has been recently developed, with high expression of astrocyte-associated markers and high astrocyte-relevant functionality. Here it is studied how the NES-Astro phenotype develops during specification and its correlation to known RG and astrocyte characteristics in human brain development. It is demonstrated that directed differentiation of neurogenic long-term neuroepithelial stem cells undergo a neurogenic-to-gliogenic competence preferential change, acquiring a glial fate. Temporal transcript profiles of long- and small RNA corroborate previously shown neurogenic restriction by glia-associated let-7 expression. Furthermore, NES-Astro differentiation displays proposed mechanistic features important for the evolutionary expansion of the oSVZ together with an astroglia/astrocyte transcriptome. The NES-Astro generation is a straight-forward differentiation protocol from stable and expandable neuroepithelial stem cell lines derived from iPS cells. Thus, the NES-Astro is an easy-access cell system with high biological relevance for studies of mechanistic traits of glia and astrocyte.
  •  
5.
  • Lundin, Anders, et al. (författare)
  • Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models
  • 2018
  • Ingår i: Stem Cell Reports. - : Cell Press. - 2213-6711. ; 10:3, s. 1030-1045
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo studies of human brain cellular function face challenging ethical and practical difficulties. Animal models are typically used but display distinct cellular differences. One specific example is astrocytes, recently recognized for contribution to neurological diseases and a link to the genetic risk factor apolipoprotein E (APOE). Current astrocytic in vitro models are questioned for lack of biological characterization. Here, we report human induced pluripotent stem cell (hiPSC)-derived astroglia (NES-Astro) developed under defined conditions through long-term neuroepithelial-like stem (ltNES) cells. We characterized NES-Astro and astrocytic models from primary sources, astrocytoma (CCF-STTG1), and hiPSCs through transcriptomics, proteomics, glutamate uptake, inflammatory competence, calcium signaling response, and APOE secretion. Finally, we assess modulation of astrocyte biology using APOE-annotated compounds, confirming hits of the cholesterol biosynthesis pathway in adult and hiPSC-derived astrocytes. Our data show large diversity among astrocytic models and emphasize a cellular context when studying astrocyte biology.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Andersson, Viktor, et al. (författare)
  • Imaging of the 3D Nanostructure of a Polymer Solar Cell by Electron Tomography
  • 2009
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 9:2, s. 853-855
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron tomography has been used for analyzing the active layer in a polymer solar cell, a bulk heterojunction of an alternating copolymer of fluorene and a derivative of fullerene. The method supplies a three-dimensional representation of the morphology of the film, where domains with different scattering properties may be distinguished. The reconstruction shows good contrast between the two phases included in the film and demonstrates that electron tomography is an adequate tool for investigations of the three-dimensional nanostructure of the amorphous materials used in polymer solar cells.
  •  
10.
  • Ashammakhi, Nureddin, et al. (författare)
  • Modelling Brain in a Chip
  • 2023
  • Ingår i: The Journal of Craniofacial Surgery. - : Ovid Technologies (Wolters Kluwer Health). - 1049-2275 .- 1536-3732. ; 34:3, s. 845-847
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
11.
  •  
12.
  • Björk, Per, et al. (författare)
  • Biomolecular nanowires decorated by organic electronic polymers
  • 2010
  • Ingår i: JOURNAL OF MATERIALS CHEMISTRY. - : Royal Society of Chemistry (RSC). - 0959-9428 .- 1364-5501. ; 20:12, s. 2269-2276
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the shaping and forming of organic electronic polymers into designer nanostructures using biomacromolecules. In order to create nanowires, nanohelixes and assemblies of these, we coordinate semiconducting or metallic polymers to biomolecular polymers in the form of DNA and misfolded proteins. Optoelectronic and electrochemical devices utilizing these shaped materials are discussed.
  •  
13.
  • Björk, Per, et al. (författare)
  • Single molecular imaging and spectroscopy of conjugated polyelectrolytes decorated on stretched aligned DNA
  • 2005
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 5:10, s. 1948-1953
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA is the prototype template for building nanoelectronic devices by self-assembly. The electronic functions are made possible by coordinating electronic polymer chains to DNA. This paper demonstrates two methods for fabrication of aligned and ordered DNA nanowires complexed with conjugated polyelectrolytes (CPEs). The complex can be formed either in solution prior to stretching or after stretching of the bare DNA on a surface. Molecular combing was used to stretch the complexes on surface energy patterned surfaces, and PMMA for the bare DNA. Single molecular spectroscopy, in fluorescence, and microscopy, in atomic force microscopy, give evidence for coordination of the short CPE chains to the aligned DNA.
  •  
14.
  •  
15.
  •  
16.
  • Buchmann, Sebastian (författare)
  • Organic Electronics and Microphysiological Systems to Interface, Monitor, and Model Biology
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biological processes in the human body are regulated through complex and precise arrangements of cell structures and their interactions. In vivo models serve as the most accurate choice for biological studies to understand these processes. However, they are costly, time-consuming, and raise ethical issues. Microphysiological systems have been developed to create advanced in vitro models that mimic in vivo-like microenvironments. They are often combined with integrated sensing technologies to perform real-time measurements to gain additional information. However, conventional sensing electrodes, made of inorganic materials such as gold or platinum, differ fundamentally from biological materials. Organic bioelectronic devices made from conjugated polymers are promising alternatives for biological sensing applications and aim to improve the interconnection between abiotic electronics and biotic materials. The widespread use of these devices is partly hindered by the limited availability of materials and low-cost fabrication methods. In this thesis, we provide new tools and materials that facilitate the use of organic bioelectronic devices for in vitro sensing applications. We developed a method to pattern the conducting polymer poly(3,4‑ethylenedioxythiophene) polystyrene sulfonate and to fabricate organic microelectronic devices using wax printing, filtering, and tape transfer. The method is low-cost, time-effective, and compatible with in vitro cell culture models. To achieve higher resolution, we further developed a patterning method using femtosecond laser ablation to fabricate organic electronic devices such as complementary inverters or biosensors. The method is maskless and independent of the type of conjugated polymer. Besides fabrication processes, we introduced a newly synthesized material, the semiconducting conjugated polymer p(g42T‑T)‑8%OH. This polymer contains hydroxylated side chains that enable surface modifications, allowing control of cell adhesion. Using the new femtosecond laser-based patterning method, we could fabricate p(g42T‑T)‑8%OH‑based organic electrochemical transistors to monitor cell barrier formations in vitro. Microphysological systems are further dependent on precise compartmentalization to study cellular interaction. We used femtosecond laser 3D printing to develop a co-culture neurite guidance platform to control placement and interactions between different types of brain cells. In summary, the thesis provides new tools to facilitate the fabrication of organic electronic devices and microphysiological systems. This increases their accessibility and widespread use to interface, monitor, and model biological systems. 
  •  
17.
  • Buchmann, Sebastian, et al. (författare)
  • Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling
  • 2023
  • Ingår i: Materials Today Bio. - : Elsevier BV. - 2590-0064. ; 21, s. 100706-100706
  • Tidskriftsartikel (refereegranskat)abstract
    • To model complex biological tissue in vitro, a specific layout for the position and numbers of each cell type isnecessary. Establishing such a layout requires manual cell placement in three dimensions (3D) with micrometricprecision, which is complicated and time-consuming. Moreover, 3D printed materials used in compartmentalizedmicrofluidic models are opaque or autofluorescent, hindering parallel optical readout and forcing serial charac-terization methods, such as patch-clamp probing. To address these limitations, we introduce a multi-level co-culture model realized using a parallel cell seeding strategy of human neurons and astrocytes on 3D structuresprinted with a commercially available non-autofluorescent resin at micrometer resolution. Using a two-stepstrategy based on probabilistic cell seeding, we demonstrate a human neuronal monoculture that forms net-works on the 3D printed structure and can establish cell-projection contacts with an astrocytic-neuronal co-cultureseeded on the glass substrate. The transparent and non-autofluorescent printed platform allows fluorescence-based immunocytochemistry and calcium imaging. This approach provides facile multi-level compartmentaliza-tion of different cell types and routes for pre-designed cell projection contacts, instrumental in studying complextissue, such as the human brain.
  •  
18.
  • Chen, Chao, 1989-, et al. (författare)
  • Bactericidal surfaces prepared by femtosecond laser patterning andlayer-by-layer polyelectrolyte coating
  • 2020
  • Ingår i: Journal of Colloid and Interface Science. - : Academic Press. - 0021-9797 .- 1095-7103. ; 575, s. 286-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial surfaces are important in medical, clinical, and industrial applications, where bacterial infection and biofouling may constitute a serious threat to human health. Conventional approaches against bacteria involve coating the surface with antibiotics, cytotoxic polymers, or metal particles. However, these types of functionalization have a limited lifetime and pose concerns in terms of leaching and degradation of the coating. Thus, there is a great interest in developing long-lasting and non-leaching bactericidal surfaces. To obtain a bactericidal surface, we combine micro and nanoscale patterning of borosilicate glass surfaces by ultrashort pulsed laser irradiation and a non-leaching layer-by-layer polyelectrolyte modification of the surface. The combination of surface structure and surface charge results in an enhanced bactericidal effect against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. The laser patterning and the layer-by-layer modification are environmentally friendly processes that are applicable to a wide variety of materials, which makes this method uniquely suited for fundamental studies of bacteria-surface interactions and paves the way for its applications in a variety of fields, such as in hygiene products and medical devices.
  •  
19.
  • Delsing, Louise, et al. (författare)
  • Models of the blood-brain barrier using iPSC-derived cells
  • 2020
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier BV. - 1044-7431 .- 1095-9327. ; 107
  • Tidskriftsartikel (refereegranskat)abstract
    • The blood-brain barrier (BBB) constitutes the interface between the blood and the brain tissue. Its primary function is to maintain the tightly controlled microenvironment of the brain. Models of the BBB are useful for studying the development and maintenance of the BBB as well as diseases affecting it. Furthermore, BBB models are important tools in drug development and support the evaluation of the brain-penetrating properties of novel drug molecules. Currently used in vitro models of the BBB include immortalized brain endothelial cell lines and primary brain endothelial cells of human and animal origin. Unfortunately, many cell lines and primary cells do not recreate physiological restriction of transport in vitro. Human-induced pluripotent stem cell (iPSC)-derived brain endothelial cells have proven a promising alternative source of brain endothelial-like cells that replicate tight cell layers with low paracellular permeability. Given the possibility to generate large amounts of human iPSC-derived brain endothelial cells they are a feasible alternative when modelling the BBB in vitro. iPSC-derived brain endothelial cells form tight cell layers in vitro and their barrier properties can be enhanced through co-culture with other cell types of the BBB. Currently, many different models of the BBB using iPSC-derived cells are under evaluation to study BBB formation, maintenance, disruption, drug transport and diseases affecting the BBB. This review summarizes important functions of the BBB and current efforts to create iPSC-derived BBB models in both static and dynamic conditions. In addition, it highlights key model requirements and remaining challenges for human iPSC-derived BBB models in vitro.
  •  
20.
  • Elhami Nik, Farzad, et al. (författare)
  • Low-Cost PVD Shadow Masks with Submillimeter Resolution from Laser-Cut Paper
  • 2020
  • Ingår i: Micromachines. - Basel : MDPI. - 2072-666X. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterize an affordable method of producing stencils for submillimeter physical vapor deposition (PVD) by using paper and a benchtop laser cutter. Patterning electrodes or similar features on top of organic or biological substrates is generally not possible using standard photolithography. Shadow masks, traditionally made of silicon-based membranes, circumvent the need for aggressive solvents but suffer from high costs. Here, we evaluate shadow masks fabricated by CO2 laser processing from quantitative filter papers. Such papers are stiff and dimensionally stable, resilient in handling, and cut without melting or redeposition. Using two exemplary interdigitated electrode designs, we quantify the line resolution achievable with both high-quality and standard lenses, as well as the positional accuracy across multiple length scales. Additionally, we assess the gap between such laser-cut paper masks and a substrate, and quantify feature reproduction onto polycarbonate membranes. We find that ~100 µm line widths are achievable independent of lens type and that average positional accuracy is better than ±100 µm at 4”-wafer scale. Although this falls well short of the micron-size features achievable with typical shadow masks, resolution in the tenths to tens of millimeters is entirely sufficient for applications from contact pads to electrochemical cells, allowing new functionalities on fragile materials.
  •  
21.
  • Engdahl, Elin, et al. (författare)
  • Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP)
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA's known impact on neurodevelopment.
  •  
22.
  •  
23.
  • Enrico, Alessandro (författare)
  • Bright Lights: Innovative Micro- and Nano-Patterning for Sensing and Tissue Engineering
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Light is the primary source of energy on our planet and has been a significant driver in the evolution of human society and technology. Light finds applications in two-dimensional (2D) photolithography and three-dimensional (3D) printing, where a pattern is transferred to a material of interest by ultraviolet (UV) light exposure, and in laser scribing and cutting, where high power lasers are used to pattern the surface of objects or cut through the bulk of the material of interest. However, conventional light-based processing has three main constraints: a) the wavelength of visible light limits resolution, b) only materials that absorb the wavelength in use can be efficiently processed, and c) intense laser light burns its target, degrading the material surrounding the exposed areas and further limiting material compatibility. Overcoming these limitations is the core of this thesis.The first part of this thesis describes three different patterning methods enabled by intelligent design and non-linear light-matter interaction. The first work reports the use of light at 365 nm to generate sub-20 nm wide nanowires (NWs) exploiting crack lithography, exceeding the possible resolution given by diffraction limit by 10-fold. The second work describes how the non-linear interaction of femtosecond laser pulses with otherwise transparent glass enables nanostructuring of borosilicate coverslips. Positively charging the nanostructured glass surfaces grants a “attract and destroy” bactericidal functionality and maintains the transparency of the substrate, creating a microscopy compatible platform to study bacteria-surface interactions and providing strategies to fight antibiotic-resistant bacteria. The third and fourth works show how femtosecond lasers can directly pattern carbon nanotube films and 2D materials (graphene, molybdenum disulfide, and platinum diselenide) without damaging the substrate or the material surrounding the exposed area. Non-linear interaction with high-energy laser pulses allows sub-300 nm resolution, circumventing the limit given by light diffraction in the linear regime. The combination of high resolution, femtosecond exposure, and ultrafast scanning speed provides a valid alternative to resist-based photolithography while eliminating the related contamination issues for these sensitive materials.The second part of this thesis describes two different 3D micromachining approaches enabled by high-intensity laser light. The fifth work presents a collagen patterning method based on laser-induced cavitation, called cavitation molding. This method represents a new biomanufacturing mode that is neither additive nor subtractive. In this study, cavitation molding enables the generation of a micro vascularized cancer-on-chip model, consisting of an in-vivo-like spheroidal mass of cancer cells surrounded by artificial blood vessels. In the sixth and final work, we used two-photon polymerization to generate 3D platforms in a biocompatible resin. This platform enables the study of the physiology of neurons and their interaction with astrocyte cells. The low autofluorescence of the printed resins allows optical readout of the neuronal activity by calcium imaging.
  •  
24.
  • Enrico, Alessandro, et al. (författare)
  • Cleanroom-Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors
  • 2024
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 mu m) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research. Ultrafast focused femtosecond laser has been introduced for the direct micropatterning of organic electrochemical transistors (OECTs), providing high resolution (2 mu m), selective cleanroom-free patterning of insulating and conjugated polymer layers while preserving device operation, and high flexibility in device design. The approach has been validated in the fabrication of complementary inverters and glucose biosensors.image
  •  
25.
  • Enrico, Alessandro, et al. (författare)
  • Ultrafast Direct Writing of Polymers as a Simple Fabrication Method for Organic Electrochemical Transistors
  • 2023
  • Ingår i: 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers 2023. - : Institute of Electrical and Electronics Engineers Inc.. ; , s. 1543-1546
  • Konferensbidrag (refereegranskat)abstract
    • Organic ionic/electronic conductors (OMIECs) offer a promising alternative to metals and inorganic semiconductors for direct interfacing between human-made electronics and biological tissues. A device that takes advantage of the mixed ionic/electronic conductivity of OMIEC materials is the organic electrochemical transistor (OECT). High-density OECTs are typically fabricated using costly cleanroom-based lithography and complex lift-off processes. To simplify the fabrication of OECTs, we propose laser direct writing of conjugated polymers using a commercial two-photon polymerization 3D printer. Ultrafast laser direct writing allows single-digit micrometer resolution and high-speed processing, thereby enabling a cost-effective and simple fabrication process.
  •  
26.
  • Hamedi, Mahiar, et al. (författare)
  • Electrochemical Devices Made from Conducting Nanowire Networks Self-Assembled from Amyloid Fibrils and Alkoxysulfonate PEDOT
  • 2008
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 8:6, s. 1736-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins offer an almost infinite number of functions and geometries for building nanostructures. Here we have focused on amyloid fibrillar proteins as a nanowire template and shown that these fibrils can be coated with the highly conducting polymer alkoxysulfonate PEDOT through molecular self-assembly in water. Transmission electron microscopy and atomic force microscopy show that the coated fibers have a diameter around 15 nm and a length/thickness aspect ratio >1:1000 . We have further shown that networks of the conducting nanowires are electrically and electrochemically active by constructing fully functional electrochemical transistors with nanowire networks, operating at low voltages between 0 and 0.5 V.
  •  
27.
  •  
28.
  • Hamedi, Mahiar, et al. (författare)
  • Nanocellulose Aerogels Functionalized by Rapid Layer-by-Layer Assembly for High Charge Storage and Beyond
  • 2013
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 52:46, s. 12038-12042
  • Tidskriftsartikel (refereegranskat)abstract
    • Step by step: A robust and rapid method for the layer-by-layer assembly of polymers and nanoparticles on strong and elastic aerogels has been developed. Thin films of biomolecules, conducting polymers, and carbon nanotubes were assembled, which resulted in aerogels with a number of functions, including a high charge-storage capacity.
  •  
29.
  • Herland, Anna, et al. (författare)
  • Alignment of a conjugated polymer onto amyloid-like protein fibrils
  • 2007
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 3:2, s. 318-325
  • Tidskriftsartikel (refereegranskat)abstract
    • The amyloid-like fibril is a biomolecular nanowire template of very high stability. Here we describe the coordination of a conjugated polyelectrolyte, poly(thiophene acetic acid) (PTAA), to bovine insulin fibrils with widths of <10 nm and lengths of up to more than 10 m. Fibrils complexed with PTAA are aligned on surfaces through molecular combing and transfer printing. Single-molecule spectroscopy techniques are applied to chart spectral variation in the emission of these wires. When these results are combined with analysis of the polarization of the emitted light, we can conclude that the polymer chains are preferentially aligned along the fibrillar axis.
  •  
30.
  • Herland, Anna, 1979- (författare)
  • Conjugated Polymers, Amyloid Detection and Assembly of Biomolecular Nanowires
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The research field of conjugated polymers has grown due to the optical and electronic properties of the material, useful in applications such as solar cells and printed electronics, but also in biosensors and for interactions with biomolecules. In this thesis conjugated polymers have been used in two related topics; to detect conformational changes in proteins and to assemble the polymers with biomolecules into nanowires.Within biosensing, conjugated polymers have been used for detection of a wide range of biological events, such as DNA hybridization or enzymatic activity, utilizing both electronic and optical changes in the polymer. Here the focus has been to use the polymers as optical probes to discriminate between native and misfolded protein, as well as to follow the misfolding processes in vitro. The understanding and detection of protein misfolding, for example amyloid fibril formation, is a topic of growing importance. The misfolding process is strongly associated with several devastating diseases such as Alzheimer’s disease, Parkinson’s disease and Bovine Spongiform Encephalopathy (BSE). We have developed detection schemes for discrimination between proteins in the native or amyloid fibril state based on luminescent polythiophene derivatives. Through a synthesis strategy based on polymerization of trimer blocks rather than of monomers, polythiophene derivatives with higher optical signal specificity for amyloid-like fibrils were obtained.Self-assembly of nanowires containing conjugated polymers is a route to generate structures of unique opto-electrical characteristics without the need for tedious topdown processes. Biomolecules can have nanowire geometries of extraordinary aspect ratio and functionalities. The DNA molecule is the most well known and exploited of these. In this thesis work the more stable amyloid fibril has been used as a template to organize conjugated polymers. Luminescent, semi-conducting, conjugated polymers have been incorporated in and assembled onto amyloid fibrils. Using luminescence quenching we have demonstrated that the conjugated material can retain the electro-activity after the incorporation process. Furthermore, the amyloid fibril/conjugated polymer hybrid structures can be organized on surfaces by the means of molecular combing and soft lithography.In the process of generating self-assembled biomolecular nanowires functionalized with conjugated polymers, we have shown a new synthesis strategy for a water-soluble highly conducting polythiophene derivative. This material, PEDOT-S, has shown affinity for amyloid fibrils, but can also be very useful in conventional opto-electronic polymer-based devices.
  •  
31.
  • Herland, Anna, 1979-, et al. (författare)
  • Conjugated polymers as optical probes for protein interactions and protein conformations
  • 2007
  • Ingår i: Macromolecular rapid communications. - : Wiley. - 1022-1336 .- 1521-3927. ; 28:17, s. 1703-1713
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for highly sensitive, multi-parallel protein sensors within diagnostics and proteomic research. Conjugated polymers (CPs) have been demonstrated as highly sensitive optical probes for protein biosensing. Compared to small molecules, the polymeric probe has the possibility of multiple interactions and a collective response, which enhances the sensor signal. The optical output is colorimetric or, more sensitive, fluorescence based, including Förster energy transfer and changes in the emission wavelengths and/or intensity. Using CPs, many interesting protein detection events have been demonstrated, e.g., protein interactions, enzymatic activity, amyloid fibril formation, and detection by aptamers. CPs have also been successfully used to stain bacterial, cellular, and tissue samples. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.
  •  
32.
  • Herland, Anna, et al. (författare)
  • Decoration of amyloid fibrils with luminescent conjugated polymers
  • 2008
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 0959-9428 .- 1364-5501. ; 18:1, s. 126-132
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we report the coating of a biological template with a polar, but uncharged, luminescent conjugated polymer, soluble in organic solvents but not in water, to produce a nanowire. Amyloid fibrils from bovine insulin were decorated with an alternating polyfluorene derivative. Decorated fibrils were partially aligned on hydrophobic surfaces as separate and bundled fibrils, by means of molecular combing. The single molecule spectroscopy technique utilizing excitation by rotating linearly polarized light and fluorescence detection through a rotating polarizer showed a high degree of anisotropy of the polymer chains on the individual fibrils. The high degree of polarization indicated highly oriented polymer chains with the preferential orientation of the polymer backbone along the fibrils. The anisotropy ratios are comparable with those of well-oriented polymer chains in films. © The Royal Society of Chemistry.
  •  
33.
  •  
34.
  • Herland, Anna, et al. (författare)
  • Electrochemical Control of Growth Factor Presentation To Steer Neural Stem Cell Differentiation
  • 2011
  • Ingår i: Angewandte Chemie International Edition. - Weinheim : Wiley-VCH Verlagsgesellschaft. - 1433-7851 .- 1521-3773. ; 50:52, s. 12529-12533
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphical Abstract Let it grow: The conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was synthesized with heparin as the counterion to form a cell culture substrate. The surface of PEDOT:heparin in the neutral state associated biologically active growth factors (see picture). Electrochemical in situ oxidation of PEDOT during live cell culture decreased the bioavailability of the growth factor and created an exact onset of neural stem cell differentiation.
  •  
35.
  •  
36.
  • Herland, Anna, et al. (författare)
  • Macromolecular Bioelectronics
  • 2020
  • Ingår i: Macromolecular Bioscience. - : Wiley. - 1616-5187 .- 1616-5195. ; 20:11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
37.
  • Herland, Anna, et al. (författare)
  • Proteomic and Metabolomic Characterization of Human Neurovascular Unit Cells in Response to Methamphetamine
  • 2020
  • Ingår i: ADVANCED BIOSYSTEMS. - : Wiley. - 2366-7478. ; 4:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional state of the neurovascular unit (NVU), composed of the blood-brain barrier and the perivasculature that forms a dynamic interface between the blood and the central nervous system (CNS), plays a central role in the control of brain homeostasis and is strongly affected by CNS drugs. Human primary brain microvascular endothelium, astrocyte, pericyte, and neural cell cultures are often used to study NVU barrier functions as well as drug transport and efficacy; however, the proteomic and metabolomic responses of these different cell types are not well characterized. Culturing each cell type separately, using deep coverage proteomic analysis and characterization of the secreted metabolome, as well as measurements of mitochondrial activity, the responses of these cells under baseline conditions and when exposed to the NVU-impairing stimulant methamphetamine (Meth) are analyzed. These studies define the previously unknown metabolic and proteomic profiles of human brain pericytes and lead to improved characterization of the phenotype of each of the NVU cell types as well as cell-specific metabolic and proteomic responses to Meth.
  •  
38.
  • Herland, Anna, et al. (författare)
  • Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips
  • 2020
  • Ingår i: Nature Biomedical Engineering. - : Springer Science and Business Media LLC. - 2157-846X. ; 4:4, s. 421-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans—using computationally scaled data from multiple fluidically linked two-channel organ chips—predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al. in an associated Article) and share an arteriovenous fluid-mixing reservoir. We also show that predictions of cisplatin PDs match previously reported patient data. The quantitative in-vitro-to-in-vivo translation of PK and PD parameters and the prediction of drug absorption, distribution, metabolism, excretion and toxicity through fluidically coupled organ chips may improve the design of drug-administration regimens for phase-I clinical trials.
  •  
39.
  • Herland, Anna, et al. (författare)
  • Synthesis of a regioregular zwitterionic conjugated oligoelectrolyte, usable as an optical probe for detection of amyloid fibril formation at acidic pH
  • 2005
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 127:7, s. 2317-2323
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes of the optical properties of conjugated polyelectrolytes have been utilized to monitor noncovalent interactions between biomolecules and the conjugated polyelectrolytes in sensor applications. A regioregular, zwitterionic conjugated oligoelectrolyte was synthesized in order to create a probe with a defined set of optical properties and hereby facilitate interpretation of biomolecule−oligoelectrolyte interactions. The synthesized oligoelectrolyte was used at acidic pH as a novel optical probe to detect amyloid fibril formation of bovine insulin and chicken lysozyme. Interaction of the probe with formed amyloid fibrils results in changes of the geometry and the electronic structure of the oligoelectrolyte chains, which were monitored with absorption and emission spectroscopy.
  •  
40.
  • Hernando, Sara, et al. (författare)
  • Dual effect of TAT functionalized DHAH lipid nanoparticles with neurotrophic factors in human BBB and microglia cultures
  • 2022
  • Ingår i: Fluids and Barriers of the CNS. - : Springer Nature. - 2045-8118. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundNeurodegenerative diseases (NDs) are an accelerating global health problem. Nevertheless, the stronghold of the brain- the blood–brain barrier (BBB) prevents drug penetrance and dwindles effective treatments. Therefore, it is crucial to identify Trojan horse-like drug carriers that can effectively cross the blood–brain barrier and reach the brain tissue. We have previously developed polyunsaturated fatty acids (PUFA)-based nanostructured lipid carriers (NLC), namely DHAH-NLC. These carriers are modulated with BBB-permeating compounds such as chitosan (CS) and trans-activating transcriptional activator (TAT) from HIV-1 that can entrap neurotrophic factors (NTF) serving as nanocarriers for NDs treatment. Moreover, microglia are suggested as a key causative factor of the undergoing neuroinflammation of NDs. In this work, we used in vitro models to investigate whether DHAH-NLCs can enter the brain via the BBB and investigate the therapeutic effect of NTF-containing DHAH-NLC and DHAH-NLC itself on lipopolysaccharide-challenged microglia.MethodsWe employed human induced pluripotent stem cell-derived brain microvascular endothelial cells (BMECs) to capitalize on the in vivo-like TEER of this BBB model and quantitatively assessed the permeability of DHAH-NLCs. We also used the HMC3 microglia cell line to assess the therapeutic effect of NTF-containing DHAH-NLC upon LPS challenge.ResultsTAT-functionalized DHAH-NLCs successfully crossed the in vitro BBB model, which exhibited high transendothelial electrical resistance (TEER) values (≈3000 Ω*cm2). Specifically, the TAT-functionalized DHAH-NLCs showed a permeability of up to 0.4% of the dose. Furthermore, using human microglia (HMC3), we demonstrate that DHAH-NLCs successfully counteracted the inflammatory response in our cultures after LPS challenge. Moreover, the encapsulation of glial cell-derived neurotrophic factor (GNDF)-containing DHAH-NLCs (DHAH-NLC-GNDF) activated the Nrf2/HO-1 pathway, suggesting the triggering of the endogenous anti-oxidative system present in microglia.ConclusionsOverall, this work shows that the TAT-functionalized DHAH-NLCs can cross the BBB, modulate immune responses, and serve as cargo carriers for growth factors; thus, constituting an attractive and promising novel drug delivery approach for the transport of therapeutics through the BBB into the brain.
  •  
41.
  •  
42.
  • Jagadeesan, Srikanth, et al. (författare)
  • Generation of a Human iPSC-Based Blood-Brain Barrier Chip
  • 2020
  • Ingår i: Journal of Visualized Experiments. - : JOURNAL OF VISUALIZED EXPERIMENTS. - 1940-087X. ; :157
  • Tidskriftsartikel (refereegranskat)abstract
    • The blood brain barrier (BBB) is formed by neurovascular units (NVUs) that shield the central nervous system (CNS) from a range of factors found in the blood that can disrupt delicate brain function. As such, the BBB is a major obstacle to the delivery of therapeutics to the CNS. Accumulating evidence suggests that the BBB plays a key role in the onset and progression of neurological diseases. Thus, there is a tremendous need for a BBB model that can predict penetration of CNS-targeted drugs as well as elucidate the BBB's role in health and disease. We have recently combined organ-on-chip and induced pluripotent stem cell (iPSC) technologies to generate a BBB chip fully personalized to humans. This novel platform displays cellular, molecular, and physiological properties that are suitable for the prediction of drug and molecule transport across the human BBB. Furthermore, using patient-specific BBB chips, we have generated models of neurological disease and demonstrated the potential for personalized predictive medicine applications. Provided here is a detailed protocol demonstrating how to generate iPSC-derived BBB chips, beginning with differentiation of iPSC-derived brain microvascular endothelial cells (iBMECs) and resulting in mixed neural cultures containing neural progenitors, differentiated neurons, and astrocytes. Also described is a procedure for seeding cells into the organ chip and culturing of the BBB chips under controlled laminar flow. Lastly, detailed descriptions of BBB chip analyses are provided, including paracellular permeability assays for assessing drug and molecule permeability as well as immunocytochemical methods for determining the composition of cell types within the chip.
  •  
43.
  •  
44.
  • Jang, Kyung-Jin, et al. (författare)
  • Reproducing human and cross-species drug toxicities using a Liver-Chip
  • 2019
  • Ingår i: Science Translational Medicine. - : AMER ASSOC ADVANCEMENT SCIENCE. - 1946-6234 .- 1946-6242. ; 11:517
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.
  •  
45.
  • Jury, Michael, 1984-, et al. (författare)
  • Bioorthogonally Cross‐Linked Hyaluronan–Laminin Hydrogels for 3D Neuronal Cell Culture and Biofabrication
  • 2022
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminins (LNs) are key components in the extracellular matrix of neuronal tissues in the developing brain and neural stem cell niches. LN-presenting hydrogels can provide a biologically relevant matrix for the 3D culture of neurons toward development of advanced tissue models and cell-based therapies for the treatment of neurological disorders. Biologically derived hydrogels are rich in fragmented LN and are poorly defined concerning composition, which hampers clinical translation. Engineered hydrogels require elaborate and often cytotoxic chemistries for cross-linking and LN conjugation and provide limited possibilities to tailor the properties of the materials. Here a modular hydrogel system for neural 3D cell cultures, based on hyaluronan and poly(ethylene glycol), that is cross-linked and functionalized with human recombinant LN-521 using bioorthogonal copper-free click chemistry, is shown. Encapsulated human neuroblastoma cells demonstrate high viability and grow into spheroids. Long-term neuroepithelial stem cells (lt-NES) cultured in the hydrogels can undergo spontaneous differentiation to neural fate and demonstrate significantly higher viability than cells cultured without LN. The hydrogels further support the structural integrity of 3D bioprinted structures and maintain high viability of bioprinted and syringe extruded lt-NES, which can facilitate biofabrication and development of cell-based therapies.
  •  
46.
  •  
47.
  • Karlsson, Roger, et al. (författare)
  • Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity
  • 2009
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 21:9, s. 1815-1821
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical polymerization of a 3,4-ethylenedioxythiophene derivative bearing a sulfonate group (EDOTS) is reported. The polymer, PEDOT-S, is fully water-soluble and has been produced by polymerizing EDOT-S in water, using Na2S2O8 and a catalytic amount of FeCl 3. Elemental analysis and XPS measurements indicate that PEDOT-S is a material with a substantial degree of self-doping, but also contains free sulfate ions as charge-balancing counterions of the oxidized polymer. Apart from selfdoping PEDOT-S, the side chains enable full water solubility of the material; DLS studies show an average cluster size of only 2 nm. Importantly, the solvation properties of the PEDOT-S are reflected in spin-coated films, which show a surface roughness of 1.2 nm and good conductivity (12 S/cm) in ambient conditions. The electro-optical properties of this material are shown with cyclic voltammetry and spectroelectrochemical experiment reveals an electrochromic contrast (̃48% at λmax ) 606 nm).
  •  
48.
  • Kavand, Hanie, et al. (författare)
  • 3D‐Printed Biohybrid Microstructures Enable Transplantation and Vascularization of Microtissues in the Anterior Chamber of the Eye
  • 2023
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095.
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybridizing biological cells with man-made sensors enable the detection of a wide range of weak physiological responses with high specificity. The anterior chamber of the eye (ACE) is an ideal transplantation site due to its ocular immune privilege and optical transparency, which enable superior non-invasive longitudinal analyses of cells and microtissues. Engraftment of biohybrid microstructures in the ACE might, however, be affected by the pupillary response and dynamics. Here, sutureless transplantation of biohybrid microstructures, 3D printed in IP-Visio photoresin, containing a precisely localized pancreatic islet to the ACE of mice is presented. The biohybrid microstructures allow mechanical fixation in the ACE, independent of iris dynamics. After transplantation, islets in the microstructures successfully sustain their functionality for over 20 weeks and become vascularized despite physical separation from the vessel source (iris) and immersion in a low-viscous liquid (aqueous humor) with continuous circulation and clearance. This approach opens new perspectives in biohybrid microtissue transplantation in the ACE, advancing monitoring of microtissue-host interactions, disease modeling, treatment outcomes, and vascularization in engineered tissues.
  •  
49.
  • Kavand, Hanie, et al. (författare)
  • Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electro‐optical Interfaces
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; , s. 2107876-2107876
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional two-dimensional cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, we give an overview of multi-sensing for Body-on-Chip platforms. Finally, we give our perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
  •  
50.
  • Khaliliazar, Shirin, et al. (författare)
  • Electrochemical Detection of Genomic DNA Utilizing Recombinase Polymerase Amplification and Stem-Loop Probe
  • 2020
  • Ingår i: ACS Omega. - : AMER CHEMICAL SOC. - 2470-1343. ; 5:21, s. 12103-12109
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleic acid tests integrated into digital point-of-care (POC) diagnostic systems have great potential for the future of health care. However, current methods of DNA amplification and detection require bulky and expensive equipment, many steps, and long process times, which complicate their integration into POC devices. We have combined an isothermal DNA amplification method, recombinase polymerase amplification, with an electrochemical stem-loop (S-L) probe DNA detection technique. By combining these methods, we have created a system that is able to specifically amplify and detect as few as 10 copies/mu L Staphylococcus epidermidis DNA with a total time to result of 70-75 min.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 93
Typ av publikation
tidskriftsartikel (72)
annan publikation (7)
doktorsavhandling (6)
konferensbidrag (5)
forskningsöversikt (2)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (73)
övrigt vetenskapligt/konstnärligt (20)
Författare/redaktör
Herland, Anna (81)
Inganäs, Olle (15)
Winkler, Thomas, Ph. ... (10)
Buchmann, Sebastian (10)
Zeglio, Erica (9)
Stemme, Göran, 1958 (9)
visa fler...
Hamedi, Mahiar (9)
Niklaus, Frank, 1971 ... (9)
Herland, Anna, 1979- (7)
Nasiri, Rohollah (7)
Enrico, Alessandro (7)
Inganäs, Olle, 1951- (6)
Hammarström, Per (6)
Konradsson, Peter (6)
Jain, Saumey (6)
Falk, Anna (5)
Björk, Per (4)
van der Wijngaart, W ... (4)
Åslund, Andreas (4)
Zetterberg, Henrik, ... (3)
Nilsson, Peter (3)
Teixeira, Ana I (3)
Lindgren, Mikael (3)
Synnergren, Jane (3)
Scheblykin, Ivan (3)
Nilsson, K. Peter R. (3)
Hicks, Ryan (3)
Das, D. (2)
Andersson, Mats, 196 ... (2)
Fahlman, Mats (2)
Reid, Michael S. (2)
McCulloch, Iain (2)
Berggren, Magnus (2)
Rasti Boroojeni, Fat ... (2)
Selegård, Robert (2)
Aili, Daniel (2)
Lannfelt, Lars (2)
Ouyang, Liangqi (2)
Westermark, Gunilla, ... (2)
Hammarström, Per, 19 ... (2)
Andersson, Jens, 197 ... (2)
Lundin, Anders (2)
Jury, Michael (2)
Ashammakhi, Nureddin (2)
Hamedi, Mahiar Max (2)
Berg, Ina (2)
Levy, O. (2)
Nilsson, Lars N G (2)
Brolén, Gabriella (2)
Holzreuter, Muriel A ... (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (67)
Karolinska Institutet (55)
Linköpings universitet (29)
Uppsala universitet (4)
Lunds universitet (4)
Göteborgs universitet (3)
visa fler...
Högskolan i Skövde (3)
Stockholms universitet (2)
Chalmers tekniska högskola (2)
visa färre...
Språk
Engelska (93)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (37)
Medicin och hälsovetenskap (33)
Teknik (27)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy