SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heuer Dagmar) "

Sökning: WFRF:(Heuer Dagmar)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banhart, Sebastian, et al. (författare)
  • Molecular epidemiological typing of Neisseria gonorrhoeae isolates identifies a novel association between genogroup G10557 (G7072) and decreased susceptibility to cefixime, Germany, 2014 to 2017
  • 2020
  • Ingår i: Eurosurveillance. - : European Centre for Disease Prevention and Control. - 1025-496X .- 1560-7917. ; 25:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Emerging antimicrobial resistance (AMR) challenges gonorrhoea treatment and requires surveillance.AimThis observational study describes the genetic diversity of Neisseria gonorrhoeae isolates in Germany from 2014 to 2017 and identifies N. gonorrhoeae multi-antigen sequence typing (NG-MAST) genogroups associated with AMR or some patient demographics.Methods: 1,220 gonococcal isolates underwent AMR testing and NG-MAST. Associations between genogroups and AMR or sex/age of patients were statistically assessed.Results: Patients' median age was 32 years (interquartile range: 25-44); 1,078 isolates (88.4%) originated from men. In total, 432 NG-MAST sequence types including 156 novel ones were identified, resulting in 17 major genogroups covering 59.1% (721/1,220) of all isolates. Genogroups G1407 and G10557 (G7072) were significantly associated with decreased susceptibility to cefixime (Kruskal-Wallis chi-squared: 549.3442, df: 16, p < 0.001). Their prevalences appeared to decline during the study period from 14.2% (15/106) to 6.2% (30/481) and from 6.6% (7/106) to 3.1% (15/481) respectively. Meanwhile, several cefixime susceptible genogroups' prevalence seemed to increase. Proportions of isolates from men differed among genogroups (Fisher's exact test, p < 0.001), being e.g. lower for G25 (G51) and G387, and higher for G5441 and G2992. Some genogroups differed relative to each other in affected patients' median age (Kruskal-Wallis chi-squared: 47.5358, df: 16, p < 0.001), with e.g. G25 (G51) and G387 more frequent among ≤ 30 year olds and G359 and G17420 among ≥ 40 year olds.Conclusion: AMR monitoring with molecular typing is important. Dual therapy (ceftriaxone plus azithromycin) recommended in 2014 in Germany, or only the ceftriaxone dose of this therapy, might have contributed to cefixime-resistant genogroups decreasing.
  •  
2.
  • Golparian, degn, 1984-, et al. (författare)
  • Antimicrobial-resistant Neisseria gonorrhoeae in Europe in 2020 compared with in 2013 and 2018 : a retrospective genomic surveillance study
  • 2024
  • Ingår i: The Lancet. Microbe. - : Elsevier. - 2666-5247. ; 5:5, s. e478-e488
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Regular quality-assured whole-genome sequencing linked to antimicrobial resistance (AMR) and patient metadata is imperative to elucidate the shifting gonorrhoea epidemiology, both nationally and internationally. We aimed to examine the gonococcal population in the European Economic Area (EEA) in 2020, elucidate emerging and disappearing gonococcal lineages associated with AMR and patient metadata, compare with 2013 and 2018 whole-genome sequencing data, and explain changes in gonococcal AMR and gonorrhoea epidemiology.METHODS: In this retrospective genomic surveillance study, we analysed consecutive gonococcal isolates that were collected in EEA countries through the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) in 2020, and made comparisons with Euro-GASP data from 2013 and 2018. All isolates had linked AMR data (based on minimum inhibitory concentration determination) and patient metadata. We performed whole-genome sequencing and molecular typing and AMR determinants were derived from quality-checked whole-genome sequencing data. Links between genomic lineages, AMR, and patient metadata were examined.FINDINGS: 1932 gonococcal isolates collected in 2020 in 21 EEA countries were included. The majority (81·2%, 147 of 181 isolates) of azithromycin resistance (present in 9·4%, 181 of 1932) was explained by the continued expansion of the Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) clonal complexes (CCs) 63, 168, and 213 (with mtrD/mtrR promoter mosaic 2) and the novel NG-STAR CC1031 (semi-mosaic mtrD variant 13), associated with men who have sex with men and anorectal or oropharyngeal infections. The declining cefixime resistance (0·5%, nine of 1932) and negligible ceftriaxone resistance (0·1%, one of 1932) was largely because of the progressive disappearance of NG-STAR CC90 (with mosaic penA allele), which was predominant in 2013. No known resistance determinants for novel antimicrobials (zoliflodacin, gepotidacin, and lefamulin) were found.INTERPRETATION: Azithromycin-resistant clones, mainly with mtrD mosaic or semi-mosaic variants, appear to be stabilising at a relatively high level in the EEA. This mostly low-level azithromycin resistance might threaten the recommended ceftriaxone-azithromycin therapy, but the negligible ceftriaxone resistance is encouraging. The decreased genomic population diversity and increased clonality could be explained in part by the COVID-19 pandemic resulting in lower importation of novel strains into Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy