SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heuzé Céline 1988) "

Sökning: WFRF:(Heuzé Céline 1988)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aldenhoff, Wiebke, 1985, et al. (författare)
  • Comparison of ice/water classification in Fram Strait from C- and L-band SAR imagery
  • 2018
  • Ingår i: Annals of Glaciology. - : Cambridge University Press (CUP). - 0260-3055 .- 1727-5644. ; 59:76pt2, s. 112-123
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper an algorithm for ice/water classification of C- and L-band dual polarization synthetic aperture radar data is presented. A comparison of the two different frequencies is made in order to investigate the potential to improve classification results with multi-frequency data. The algorithm is based on backscatter intensities in co- and cross-polarization and autocorrelation as a texture feature. The mapping between image features and ice/water classification is made with a neural network. Accurate ice/water maps for both frequencies are produced by the algorithm and the results of two frequencies generally agree very well. Differences are found in the marginal ice zone, where the time difference between acquisitions causes motion of the ice pack. C-band reliably reproduces the outline of the ice edge, while L-band has its strengths for thin ice/calm water areas within the icepack. The classification shows good agreement with ice/water maps derived from met.no ice-charts and radiometer data from AMSR-2. Variations are found in the marginal ice zone where the generalization of the ice charts and lower accuracy of ice concentration from radiometer data introduce deviations. Usage of high-resolution dual frequency data could be beneficial for improving ice cover information for navigation and modelling.
  •  
2.
  • Aldenhoff, Wiebke, 1985, et al. (författare)
  • COMPARISON OF SENTINEL-1 SAR AND SENTINEL-3 ALTIMETRY DATA FOR SEA ICE TYPE DISCRIMINATION
  • 2019
  • Ingår i: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. - 9781538691540
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In this paper near co-incidental Sentinel-1 C-band SAR imagery and Sentinel-3 SRAL Ku-band altimeter data are compared for their capabilities of sea ice type discrimination. Knowledge of sea ice type is important for climate research and safety in Arctic offshore operations. First-year ice is characterised by a low SAR backscatter intensity in both HH and HV polarisation compared to multi-year ice, while the altimeter waveform parameters show high pulse peakiness and peak power compared to multi-year ice. Thus SAR imagery and altimetry can principally discriminate different ice types. The complexity of the backscattered radar signal however impedes a clear separation of the two types for all cases. Cross comparison of the two sensors offers an opportunity of high resolution validation data, which is often lacking for sea ice studies.
  •  
3.
  • Aldenhoff, Wiebke, 1985, et al. (författare)
  • First-Year and Multiyear Sea Ice Incidence Angle Normalization of Dual-Polarized Sentinel-1 SAR Images in the Beaufort Sea
  • 2020
  • Ingår i: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. - 1939-1404 .- 2151-1535. ; 13, s. 1540-1550
  • Tidskriftsartikel (refereegranskat)abstract
    • Automatic and visual sea ice classification of SAR imagery is impeded by the incidence angle dependence of backscatter intensities. Knowledge of the angular dependence of different ice types is therefore necessary to account for this effect. While consistent estimates exist for HH polarization for different ice types, they are lacking HV polarization data, especially for multiyear sea ice. Here we investigate the incidence angle dependence of smooth and rough/deformed first-year and multiyear ice of different ages for wintertime dual-polarization Sentinel-1 C-band SAR imagery in the Beaufort Sea. Assuming a linear relationship, this dependence is determined using the difference in incidence angle and backscatter intensities from ascending and descending images of the same area. At cross-polarization rough/deformed first-year sea ice shows the strongest angular dependence with -text{0.11} dB/1{circ } followed by multiyear sea ice with -text{0.07} dB/text{1}{circ }, and old multiyear ice (older than three years) with -text{0.04} dB/text{1}{circ }. The noise floor is found to have a strong impact on smooth first-year ice and estimated slopes are therefore not fully reliable. At co-polarization, we obtained slope values of -0.24, -0.20, -text{0.15}, and -text{0.10} dB/text{1}{circ } for smooth first-year, rough/deformed first-year, multiyear, and old multiyear sea ice, respectively. Furthermore, we show that imperfect noise correction of the first subswath influences the obtained slopes for multiyear sea ice. We demonstrate that incidence angle normalization should not only be applied to co-polarization but should also be considered for cross-polarization images to minimize intra ice type variation in backscatter intensity throughout the entire image swath. © 2008-2012 IEEE.
  •  
4.
  • Aldenhoff, Wiebke, 1985, et al. (författare)
  • Sensitivity of radar altimeter waveform to changes in sea ice type at resolution of Synthetic Aperture Radar
  • 2019
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 11:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Radar altimetry in the context of sea ice has mostly been exploited to retrieve basin-scale information about sea ice thickness. In this paper, we investigate the sensitivity of altimetric waveforms to small-scale changes (a few hundred meters to about 10 km) of the sea ice surface. Near-coincidental synthetic aperture radar (SAR) imagery and CryoSat-2 altimetric data in the Beaufort Sea are used to identify and study the spatial evolution of altimeter waveforms over these features. Open water and thin ice features are easily identified because of their high peak power waveforms. Thicker ice features such as ridges and multiyear ice floes of a few hundred meters cause a response in the waveform. However, these changes are not reflected in freeboard estimates. Retrieval of robust freeboard estimates requires homogeneous floes in the order of 10 km along-track and a few kilometers to both sides across-track. We conclude that the combination of SAR imagery and altimeter data could improve the local sea ice picture by extending spatially scarce freeboard estimates to regions of similar SAR signature.
  •  
5.
  • Carvajal, Gisela, 1983, et al. (författare)
  • Assessment of satellite and ground-based estimates of surface currents
  • 2016
  • Ingår i: 36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016; Beijing; China; 10-15 July 2016. - New York : IEEE. - 2153-7003. ; 2016-November,, s. Art no 7730220, Pages 4675-4678
  • Konferensbidrag (refereegranskat)abstract
    • Estimation of surface currents still presents a challenge. In this work validates surface current estimates from the Maximum Cross Correlation (MCC) method, that uses spaceborne radiometer data, against ground-based retrievals from a High Frequency (HF) radar system. Moreover, these datasets have been compared with surface current data from two assimilated satellite products and four weather prediction models. The comparison shows large differences in the spatial resolution and the location of specific features. It is concluded that the variation of the observations may be due to the difference between the measuring or estimated method used in each case and the forces driving them.
  •  
6.
  • de Boer, Agatha M., et al. (författare)
  • The Impact of Southern Ocean Topographic Barriers on the Ocean Circulation and the Overlying Atmosphere
  • 2022
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 35:18, s. 5805-5821
  • Tidskriftsartikel (refereegranskat)abstract
    • Southern Ocean bathymetry constrains the path of the Antarctic Circumpolar Current (ACC), but the bathymetric influence on the coupled ocean–atmosphere system is poorly understood. Here, we investigate this impact by respectively flattening large topographic barriers around the Kerguelen Plateau, Campbell Plateau, Mid-Atlantic Ridge, and Drake Passage in four simulations in a coupled climate model. The barriers impact both the wind and buoyancy forcing of the ACC transport, which increases by between 4% and 14% when barriers are removed individually and by 56% when all barriers are removed simultaneously. The removal of Kerguelen Plateau bathymetry increases convection south of the plateau and the removal of Drake Passage bathymetry reduces convection upstream in the Ross Sea. When the barriers are removed, zonal flattening of the currents leads to sea surface temperature (SST) anomalies that strongly correlate to precipitation anomalies, with correlation coefficients ranging between r = 0.92 and r = 0.97 in the four experiments. The SST anomalies correlate to the surface winds too in some locations. However, they also generate circumpolar waves of sea level pressure (SLP) anomalies, which induce remote wind speed changes that are unconnected to the underlying SST field. The meridional variability in the wind stress curl contours over the Mid-Atlantic Ridge, the Kerguelen Plateau, and the Campbell Plateau disappears when these barriers are removed, confirming the impact of bathymetry on surface winds. However, bathymetry-induced wind changes are too small to affect the overall wave-3 asymmetry in the Southern Hemisphere westerlies. Removal of Southern Hemisphere orography is also inconsequential to the wave-3 pattern.
  •  
7.
  • Gong, Xun, et al. (författare)
  • Of Atlantic Meridional Overturning Circulation in the CMIP6 Project
  • 2022
  • Ingår i: Deep-Sea Research Part II: Topical Studies in Oceanography. - : Elsevier BV. - 0967-0645 .- 1879-0100. ; 206
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atlantic Meridional Overturning Circulation (AMOC) upper-cell circulation is widely linked to global oceans and climate. Here, we focus on a statistical overview about the modelled AMOCs on the basis of the historical simulations in the 5th and 6th phase of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), including the modelled AMOC strength, cell structure, long-term trend and the variabilities on interannual, decadal and multi-decadal scales. Our results show that the multi-model averaged AMOC mean state of CMIP5 is insignificantly different from the CMIP6 results, meanwhile the corresponding multi-model averaged AMOC variability is reduced from CMIP5 to CMIP6 results. Moreover, the CMIP6 multi-model averaged AMOC becomes further distinct from the mean state of Rapid Climate Change (RAPID) observations. Overall, 7 out of the 18 CMIP6 models have suggested AMOC strengthening, meanwhile 6 models have indicated declining trends in the AMOC, with the rest 5 models in the variabilities with insignificant trends. Overall, the CMIP6 results have suggested pronounced modelling discrepancies in revealing AMOC trends, distinct from the more commonly weakening trend of the AMOCs in the CMIP5 simulations. Moreover, the multi-model averaged AMOC variabilities are comparable between CMIP5 and CMIP6 simulations, on inter-annual, decadal and multi-decadal time scales, with the discrepancies remaining among models.
  •  
8.
  • Hassett, Brandon, et al. (författare)
  • Global diversity and geography of planktonic marine fungi
  • 2020
  • Ingår i: Botanica Marina. - : Walter de Gruyter GmbH. - 0006-8055 .- 1437-4323. ; 63:2, s. 121-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing interest in understanding the relevance of marine fungi to food webs, biogeochemical cycling, and biological patterns necessitates establishing a context for interpreting future findings. To help establish this context, we summarize the diversity of cultured and observed marine planktonic fungi from across the world. While exploring this diversity, we discovered that only half of the known marine fungal species have a publicly available DNA locus, which we hypothesize will likely hinder accurate high-throughput sequencing classification in the future, as it does currently. Still, we reprocessed >600 high-throughput datasets and analyzed 4.9×109 sequences (4.8×109 shotgun metagenomic reads and 1.0×108 amplicon sequences) and found that every fungal phylum is represented in the global marine planktonic mycobiome; however, this mycobiome is generally predominated by three phyla: the Ascomycota, Basidiomycota, and Chytridiomycota. We hypothesize that these three clades are the most abundant due to a combination of evolutionary histories, as well as physical processes that aid in their dispersal. We found that environments with atypical salinity regimes (>5 standard deviations from the global mean: Red Sea, Baltic Sea, sea ice) hosted higher proportions of the Chytridiomycota, relative to open oceans that are dominated by Dikarya. The Baltic Sea and Mediterranean Sea had the highest fungal richness of all areas explored. An analysis of similarity identified significant differences between oceanographic regions. There were no latitudinal gradients of marine fungal richness and diversity observed. As more high-throughput sequencing data become available, expanding the collection of reference loci and genomes will be essential to understanding the ecology of marine fungi.
  •  
9.
  •  
10.
  • Heuzé, Céline, 1988 (författare)
  • Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models
  • 2021
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 17:1, s. 59-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep and bottom water formation are crucial components of the global ocean circulation, yet they were poorly represented in the previous generation of climate models. We here quantify biases in Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) formation, properties, transport, and global extent in 35 climate models that participated in the latest Climate Model Intercomparison Project (CMIP6). Several CMIP6 models are correctly forming AABW via shelf processes, but 28 models in the Southern Ocean and all 35 models in the North Atlantic form deep and bottom water via open-ocean deep convection too deeply, too often, and/or over too large an area. Models that convect the least form the most accurate AABW but the least accurate NADW. The four CESM2 models with their overflow parameterisation are among the most accurate models. In the Atlantic, the colder the AABW, the stronger the abyssal overturning at 30 degrees S, and the further north the AABW layer extends. The saltier the NADW, the stronger the Atlantic Meridional Overturning Circulation (AMOC), and the further south the NADW layer extends. In the Indian and Pacific oceans in contrast, the fresher models are the ones which extend the furthest regardless of the strength of their abyssal overturning, most likely because they are also the models with the weakest fronts in the Antarctic Circumpolar Current. There are clear improvements since CMIP5: several CMIP6 models correctly represent or parameterise Antarctic shelf processes, fewer models exhibit Southern Ocean deep convection, more models convect at the right location in the Labrador Sea, bottom density biases are reduced, and abyssal overturning is more realistic. However, more improvements are required, e.g. by generalising the use of overflow parameterisations or by coupling to interactive ice sheet models, before deep and bottom water formation, and hence heat and carbon storage, are represented accurately.
  •  
11.
  • Heuzé, Céline, 1988, et al. (författare)
  • Can we map the interannual variability of the whole upper Southern Ocean with the current database of hydrographic observations?
  • 2015
  • Ingår i: Journal of Geophysical Research - Oceans. - 0148-0227 .- 2156-2202. ; 120:12, s. 7960-7978
  • Tidskriftsartikel (refereegranskat)abstract
    • With the advent of Argo floats, it now seems feasible to study the interannual variations of upper ocean hydrographic properties of the historically undersampled Southern Ocean. To do so, scattered hydrographic profiles often first need to be mapped. To investigate biases and errors associated both with the limited space-time distribution of the profiles and with the mapping methods, we colocate the mixed layer depth (MLD) output from a state-of-the-art 1/12° DRAKKAR simulation onto the latitude, longitude and date of actual in-situ profiles from 2005 to 2014. We compare the results obtained after remapping using a nearest-neighbor (NN) interpolation and an objective analysis (OA) with different spatio-temporal grid resolutions and decorrelation scales. NN is improved with a coarser resolution. OA performs best with low decorrelation scales, avoiding too strong a smoothing, but returns values over larger areas with large decorrelation scales and low temporal resolution, as more points are available. For all resolutions OA represents better the annual extreme values than NN. Both methods underestimate the seasonal cycle in MLD. MLD biases are lower than 10 m on average but can exceed 250 m locally in winter. We argue that current Argo data should not be mapped to infer decadal trends in MLD, as all methods are unable to reproduce existing trends without creating unrealistic extra ones. We also show that regions of the subtropical Atlantic, Indian and Pacific Oceans, and the whole ice-covered Southern Ocean, still cannot be mapped even by the best method because of the lack of observational data.
  •  
12.
  • Heuzé, Céline, 1988, et al. (författare)
  • Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4
  • 2015
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 8:10, s. 3119-3130
  • Tidskriftsartikel (refereegranskat)abstract
    • Most CMIP5 (Coupled Model Intercomparison Project Phase 5) models unrealistically form Antarctic Bottom Water by open ocean deep convection in the Weddell and Ross seas. To identify the mechanisms triggering Southern Ocean deep convection in models, we perform sensitivity experiments on the ocean model NEMO3.4 forced by prescribed atmospheric fluxes. We vary the vertical velocity scale of the Langmuir turbulence, the fraction of turbulent kinetic energy transferred below the mixed layer, and the background diffusivity and run short simulations from 1980. All experiments exhibit deep convection in the Riiser-Larsen Sea in 1987; the origin is a positive sea ice anomaly in 1985, causing a shallow anomaly in mixed layer depth, hence anomalously warm surface waters and subsequent polynya opening. Modifying the vertical mixing impacts both the climatological state and the associated surface anomalies. The experiments with enhanced mixing exhibit colder surface waters and reduced deep convection. The experiments with decreased mixing give warmer surface waters, open larger polynyas causing more saline surface waters and have deep convection across the Weddell Sea until the simulations end. Extended experiments reveal an increase in the Drake Passage transport of 4 Sv each year deep convection occurs, leading to an unrealistically large transport at the end of the simulation. North Atlantic deep convection is not significantly affected by the changes in mixing parameters. As new climate model overflow parameterisations are developed to form Antarctic Bottom Water more realistically, we argue that models would benefit from stopping Southern Ocean deep convection, for example by increasing their vertical mixing.
  •  
13.
  • Heuzé, Céline, 1988, et al. (författare)
  • It's high time we monitor the deep ocean
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 17:12
  • Tidskriftsartikel (refereegranskat)
  •  
14.
  • Heuzé, Céline, 1988, et al. (författare)
  • Near-Real Time Detection of the Re-Opening of the Weddell Polynya, Antarctica, from Spaceborne Infrared Imagery
  • 2018
  • Ingår i: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. - 9781538671504
  • Konferensbidrag (refereegranskat)abstract
    • A hole in the Antarctic sea ice cover, the Weddell Polynya, unexpectedly re-opened in winter 2017 for the first time since 1976. Models suggest that the polynya opened because warm oceanic water moved up to the surface, melting the ice from below. Here three temperature thresholds applied to near-hourly spaceborne infrared imagery (AVHRR) successfully detect the appearance of a warm spot up to five days before the polynya opened in June and September 2017. Traditional sea ice concentration and thickness criteria could only detect the polynya once it was open. An automatised warning system, using near-real time passive monitoring of warm spots, would allow researchers to reroute vessels or autonomous sensors in order to finally study the polynya as a whole when it opens again, from its preconditioning to its impacts on the climate system.
  •  
15.
  • Heuzé, Céline, 1988, et al. (författare)
  • No Emergence of Deep Convection in the Arctic Ocean Across CMIP6 Models
  • 2024
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • As sea ice disappears, the emergence of open ocean deep convection in the Arctic, which would enhance ice loss, has been suggested. Here, using 36 state-of-the-art climate models and up to 50 ensemble members per model, we show that Arctic deep convection is rare under the strongest warming scenario. Only five models have convection by 2100, while 11 have had convection by the middle of the run. For all, the deepest mixed layers are in the eastern Eurasian basin. When that region undergoes a salinification and increasing wind speeds, the models convect; yet most models are freshening. The models that do not convect have the strongest halocline and most stable sea ice, but those that lose their ice earliest -because of their strongly warming Atlantic Water- do not have a persistent deep convection: it shuts down mid-century. Halocline and Atlantic Water changes urgently need to be better constrained in models.
  •  
16.
  • Heuzé, Céline, 1988 (författare)
  • North Atlantic deep water formation and AMOC in CMIP5 models
  • 2017
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 13, s. 609-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often, and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turns, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecast Arctic oceanic warming and its consequences on the global ocean circulation, cryosphere and marine life.
  •  
17.
  • Heuzé, Céline, 1988, et al. (författare)
  • Optimization of Sea Surface Current Retrieval Using a Maximum Cross-Correlation Technique on Modeled Sea Surface Temperature
  • 2017
  • Ingår i: Journal of Atmospheric and Oceanic Technology. - : American Meteorological Society. - 1520-0426 .- 0739-0572. ; 34:10, s. 2245-2255
  • Tidskriftsartikel (refereegranskat)abstract
    • Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real-time implementation has not been possible. Validation studies are too region specific or uncertain, sometimes because of the satellite images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of western Europe, and the best of nine settings and eight temporal resolutions are determined. The regions with strong currents return the most accurate results when tracking a 20-km pattern between two images separated by 6-9 h. The regions with weak currents favor a smaller pattern and a shorter time interval, although their main problem is not inaccurate results but missing results: where the velocity is too low to be picked by the retrieval. The results are not impaired by the restrictions imposed by ocean surface current dynamics and available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible, for pollution confinement, search and rescue, and even for more energy-efficient and comfortable ship navigation.
  •  
18.
  • Heuzé, Céline, 1988, et al. (författare)
  • Optimization of Sea Surface Current Retrieval Using a Maximum Cross-Correlation Technique on Modeled Sea Surface Temperature
  • 2017
  • Ingår i: Journal of Atmospheric and Oceanic Technology. - 0739-0572 .- 1520-0426. ; 34, s. 2245-2255
  • Tidskriftsartikel (refereegranskat)abstract
    • Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real-time implementation has not been possible. Validation studies are too region specific or uncertain, sometimes because of the satellite images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of western Europe, and the best of nine settings and eight temporal resolutions are determined. The regions with strong currents return the most accurate results when tracking a 20-km pattern between two images separated by 6–9 h. The regions with weak currents favor a smaller pattern and a shorter time interval, although their main problem is not inaccurate results but missing results: where the velocity is too low to be picked by the retrieval. The results are not impaired by the restrictions imposed by ocean surface current dynamics and available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible, for pollution confinement, search and rescue, and even for more energy-efficient and comfortable ship navigation.
  •  
19.
  • Heuzé, Céline, 1988, et al. (författare)
  • Pathways of meltwater export from Petermann Glacier, Greenland
  • 2017
  • Ingår i: Journal of Physical Oceanography. - 0022-3670. ; 47:2, s. 405-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrusions of Atlantic Water cause basal melting of Greenland’s marine terminated glaciers and ice shelves such as that of Petermann Glacier, in northwest Greenland. The fate of the resulting glacial meltwater is largely unknown. It is investigated here, using hydrographic observations collected during a research cruise in Petermann Fjord and adjacent Nares Strait on board I/B Oden in August 2015. A three end-member mixing method provides the concentration of Petermann ice shelf meltwater. Meltwater from Petermann is found in all of the casts in adjacent Nares Strait, with highest concentration along the Greenland coast in the direction of Kelvin wave phase propagation. The meltwater from Petermann mostly flows out on the northeast side of the fjord as a baroclinic boundary current, with the depth of maximum meltwater concentrations approximately 150 m and shoaling along its pathway. At the outer sill, which separates the fjord from the ambient ocean, approximately 0.3 mSv of basal meltwater leaves the fjord at depths between 100 and 300 m. The total geostrophic heat and freshwater fluxes close to the glacier's terminus in August 2015 were similar to those estimated in August 2009, before the two major calving events that reduced the length of Petermann's ice tongue by nearly a third, and despite warmer inflowing Atlantic Water. These results provide a baseline, but also highlight what is needed to assess properly the impact on ocean circulation and sea level of Greenland's mass loss as the Atlantic Water warms up.
  •  
20.
  • Heuzé, Céline, 1988, et al. (författare)
  • Sea Surface Currents Estimated from Spaceborne Infrared Images Validated against Reanalysis Data and Drifters in the Mediterranean Sea
  • 2017
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 9:5, s. Article Number: 422-
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-real time sea surface current information is needed for ocean operations. On a global scale, only satellites can provide such measurements. This can be done with data from infrared radiometers, available on several satellites, thus giving several images a day. This work analyses the accuracy of such an estimation of surface current fields retrieved with the maximum cross correlation (MCC) method, here used to track patterns of Advanced Very High Resolution Radiometer (AVHRR) brightness temperature between 224 pairs of consecutive images taken between January and December 2015 in the western Mediterranean Sea. Comparison with in-situ drifters shows that relatively small patterns, moving at a slow speed, tracked between images separated by less than four hours give the best agreement. The agreement was strongest in summer, and consistent with low wind, non-eddying situations. When compared to a daily reanalysis field, the averaged satellite-retrieved fields showed good agreement, but not the in-situ drifter data. Drifter data should hence be used to complement satellite-retrieved currents rather than to validate them, since they may measure different components of the surface currents.
  •  
21.
  • Heuzé, Céline, 1988, et al. (författare)
  • Spaceborne infrared imagery for early detection of Weddell Polynya opening
  • 2021
  • Ingår i: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 15:7, s. 3401-3421
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowing when sea ice will open is crucial, notably for scientific deployments. This was particularly obvious when the Weddell Polynya, a large opening in the winter Southern Ocean sea ice, unexpectedly re-appeared in 2016. As no precursor had been detected, observations were limited to chance autonomous sensors, and the exact cause of the opening could not be determined accurately. We investigate here whether the signature of the vertical ocean motions or that of the leads, which ultimately re-open the polynya, are detectable in spaceborne infrared temperature before the polynya opens. From the full historical sea ice concentration record, we find 30 polynyas starting from 1980. Then, using the full time series of the spaceborne infrared Advanced Very High Resolution Radiometer, we determine that these events can be detected in the 2 weeks before the polynya opens as a reduction in the variance of the data. For the three commonly used infrared brightness temperature bands, the 15 d sum and 15 d standard deviation of their area median and maximum are systematically lower than the climatology when a polynya will open. Moreover, by comparing the infrared brightness temperature to atmospheric reanalysis, hydrographic mooring data, and autonomous profilers, we find that temporal oscillations in one band and the decrease in the difference between bands may be used as proxies for upwelling of warm water and presence of leads, respectively, albeit with caution. Therefore, although infrared data are strongly limited by their horizontal resolution and sensitivity to clouds, they could be used for studying ocean or atmosphere preconditioning of polynyas in the historical record.
  •  
22.
  • Heuzé, Céline, 1988, et al. (författare)
  • The Atlantic inflow across the Greenland-Scotland ridge in global climate models (CMIP5)
  • 2019
  • Ingår i: Elementa Science of the Anthropocene. - : University of California Press. - 2325-1026. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Oceanic heat transport from the North Atlantic to the Arctic through the Nordic Seas is a key component of the climate system that has to be modelled accurately in order to predict, for example, future Arctic sea ice changes or European climate. Here we quantify biases in the climatological state and dynamics of the transport of oceanic heat into the Nordic Seas across the Greenland-Scotland ridge in 23 state-of-the-art global climate models that participated in the Climate Model Intercomparison Project phase 5. The mean poleward heat transport, its seasonal cycle and interannual variability are inconsistently represented across these models, with a vast majority underestimating them and a few models greatly overestimating them. The main predictor for these biases is the resolution of the model via its representation of the Greenland-Scotland ridge bathymetry: the higher the resolution, the larger the heat transport through the section. The second predictor is the large-scale ocean circulation, which is also connected to the bathymetry: models with the largest heat transport import water from the European slope current into all three straits of the Greenland-Scotland ridge, whereas those with a weak transport import water from the Labrador Sea. The third predictor is the spatial pattern of their main atmospheric modes of variability (North Atlantic Oscillation, East Atlantic and Scandinavian patterns), where the models with a weak inflow have their atmospheric low-pressure centre shifted south towards the central Atlantic. We argue that the key to a better representation of the large-scale oceanic heat transport from the North Atlantic to the Arctic in global models resides not only in higher resolution, but also in a better bathymetry and representation of the complex ocean-ice-atmosphere interactions.
  •  
23.
  •  
24.
  • Heuzé, Céline, 1988, et al. (författare)
  • The Weddell Sea Polynya
  • 2019
  • Ingår i: Journal of Operational Oceanography. Copernicus Marine Service Ocean State Report.
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
25.
  •  
26.
  • Konrad-Schmolke, Matthias, 1970, et al. (författare)
  • Discrimination of thermodynamic and kinetic contributions to the heavy rare earth element patterns in metamorphic garnet
  • 2022
  • Ingår i: Journal of Metamorphic Geology. - : Wiley. - 0263-4929 .- 1525-1314. ; 41:4, s. 465-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations of rare earth element (REE) concentrations in metamorphic garnet are an important source of information of geodynamic and geochemical processes in the deeper Earth. In order to extract this information, the thermodynamic equilibrium and kinetic contributions of the REE uptake in garnet must be distinguished and quantified. Utilizing high-resolution trace element and μ-Raman mapping together with combined thermodynamic–geochemical–diffusion models, we demonstrate that the equilibrium and kinetic aspects of the REE uptake in metamorphic garnet can be discriminated by interpreting 2D trace element mapping in a single sample. The heavy (H) REE (Tb to Lu) zoning in the investigated garnet from a high-pressure blueschist comprises an inner part with an overall decrease from core to inner rim, followed by a concentric zone of HREE enrichment and a drastic HREE decrease towards the outermost rim. The central peak in the garnet core decreases in intensity with decreasing atomic number of the REE. The broad overall shape of this pattern resembles those often observed in metamorphic garnet from different rock types and tectonic settings. Superimposed on this trend is a concentric pattern of minor recurring fluctuations in the HREE concentrations with at least six regularly spaced sets of peaks and troughs along the entire garnet radius. Comparison of the observed inclusion suite, the trace element maps and thermodynamic–geochemical models show that the inner part with decreasing HREE concentrations results from fractional garnet growth in an unchanged mineral assemblage, whereas the REE enrichment zone is caused by the breakdown of titanite. We suggest that the width of the central peak is controlled by the bulk permeability of the interconnected transport matrix and the fraction of matrix minerals that the garnet equilibrates with. The superimposed REE fluctuations result from changing element transport properties of the host rock and mark recurring changes from equilibrium REE uptake to transport-limited REE uptake in garnet. Such fluctuating element transport properties can be best explained by pulse-like fluid fluxes that rhythmically change the interconnectivity of the intercrystalline transport matrix. Increasing numbers of published spatially highly resolved REE analyses show that such trace element fluctuations are common in metamorphic garnet indicating that recurring changes in rock permeabilities due to pulsed fluid fluxes are a common phenomenon during metamorphism.
  •  
27.
  • Mohrmann, Martin, et al. (författare)
  • Observed Mixing at the Flanks of Maud Rise in the Weddell Sea
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Maud Rise is a seamount in the eastern Weddell Sea and the location of polynyas and a persistent halo of reduced sea ice. We present novel in situ data from two profiling floats with up to daily resolved hydrographic profiles in this region. The water properties below the mixed layer of the Maud Rise region are significantly correlated with bathymetric depth; thus, the Maud Rise flank defines the front between the Warm Deep Water of the abyssal ocean and the colder Taylor cap over Maud Rise. We analyze the spiciness curvature in density space to quantify the observed frequency or magnitude of intrusions, which are substantially increased along the flanks of Maud Rise. These intrusions are indicative of enhanced lateral and vertical mixing along heavily sloping isopycnals, creating favorable conditions for thermobaric and double diffusive convection and likely facilitating the formation of the Maud Rise halo and polynyas.
  •  
28.
  • Mohrmann, Martin, et al. (författare)
  • Southern Ocean polynyas in CMIP6 models
  • 2021
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 15:9, s. 4281-4313
  • Tidskriftsartikel (refereegranskat)abstract
    • Polynyas facilitate air–sea fluxes, impacting climate-relevant properties such as sea ice formation and deep water production. Despite their importance, polynyas have been poorly represented in past generations of climate models. Here we present a method to track the presence, frequency and spatial distribution of polynyas in the Southern Ocean in 27 models participating in the Climate Model Intercomparison Project Phase 6 (CMIP6) and two satellite-based sea ice products. Only half of the 27 models form open-water polynyas (OWPs), and most underestimate their area. As in satellite observations, three models show episodes of high OWP activity separated by decades of no OWP, while other models unrealistically create OWPs nearly every year. In contrast, the coastal polynya area is overestimated in most models, with the least accurate representations occurring in the models with the coarsest horizontal resolution. We show that the presence or absence of OWPs is linked to changes in the regional hydrography, specifically the linkages between polynya activity with deep water convection and/or the shoaling of the upper water column thermocline. Models with an accurate Antarctic Circumpolar Current transport and wind stress curl have too frequent OWPs. Biases in polynya representation continue to exist in climate models, which has an impact on the regional ocean circulation and ventilation that should be addressed. However, emerging iceberg discharge schemes, more adequate vertical grid type or overflow parameterisation are anticipated to improve polynya representations and associated climate prediction in the future.
  •  
29.
  •  
30.
  • Nicolaus, Marcel, et al. (författare)
  • Overview of the MOSAiC expedition: Snow and Sea Ice
  • 2022
  • Ingår i: Elementa Science of the Anthropocene. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice.
  •  
31.
  • Poropat, Lea, 1989, et al. (författare)
  • Unsupervised classification of the northwestern European seas based on satellite altimetry data
  • 2024
  • Ingår i: OCEAN SCIENCE. - 1812-0784 .- 1812-0792. ; 20:1, s. 201-215
  • Tidskriftsartikel (refereegranskat)abstract
    • From generating metrics representative of a wide region to saving costs by reducing the density of an observational network, the reasons to split the ocean into distinct regions are many. Traditionally, this has been done somewhat arbitrarily using the bathymetry and potentially some artificial latitude-longitude boundaries. We use an ensemble of Gaussian mixture models (GMMs, unsupervised classification) to separate the complex northwestern European coastal region into classes based on sea level variability observed by satellite altimetry. To reduce the dimensionality of the data, we perform a principal component analysis on 27 years of observations and use the spatial components as input for the GMM. The number of classes or mixture components is determined by locating the maximum of the silhouette score and by testing several models. We use an ensemble approach to increase the robustness of the classification and to allow the separation into more regions than a single GMM can achieve. We also vary the number of empirical orthogonal function (EOF) maps and show that more EOFs result in a more detailed classification. With three EOFs, the area is classified into four distinct regions delimited mainly by bathymetry. Adding more EOFs results in further subdivisions that resemble oceanic fronts. To achieve a more detailed separation, we use a model focused on smaller regions, specifically the Baltic Sea, North Sea, and the Norwegian Sea.
  •  
32.
  • Rabe, Benjamin, et al. (författare)
  • Overview of the MOSAiC expedition: Physical Oceanography
  • 2022
  • Ingår i: Elementa Science of the Anthropocene. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
  •  
33.
  • Rabe, Benjamin, et al. (författare)
  • The MOSAiC Distributed Network: Observing the coupled Arctic system with multidisciplinary, coordinated platforms
  • 2024
  • Ingår i: Elementa. - 2325-1026. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Central Arctic properties and processes are important to the regional and global coupled climate system. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network (DN) of autonomous ice-tethered systems aimed to bridge gaps in our understanding of temporal and spatial scales, in particular with respect to the resolution of Earth system models. By characterizing variability around local measurements made at a Central Observatory, the DN covers both the coupled system interactions involving the ocean-ice-atmosphere interfaces as well as three-dimensional processes in the ocean, sea ice, and atmosphere. The more than 200 autonomous instruments (“buoys”) were of varying complexity and set up at different sites mostly within 50 km of the Central Observatory. During an exemplary midwinter month, the DN observations captured the spatial variability of atmospheric processes on sub-monthly time scales, but less so for monthly means. They show significant variability in snow depth and ice thickness, and provide a temporally and spatially resolved characterization of ice motion and deformation, showing coherency at the DN scale but less at smaller spatial scales. Ocean data show the background gradient across the DN as well as spatially dependent time variability due to local mixed layer sub-mesoscale and mesoscale processes, influenced by a variable ice cover. The second case (May–June 2020) illustrates the utility of the DN during the absence of manually obtained data by providing continuity of physical and biological observations during this key transitional period. We show examples of synergies between the extensive MOSAiC remote sensing observations and numerical modeling, such as estimating the skill of ice drift forecasts and evaluating coupled system modeling. The MOSAiC DN has been proven to enable analysis of local to mesoscale processes in the coupled atmosphere-ice-ocean system and has the potential to improve model parameterizations of important, unresolved processes in the future.
  •  
34.
  • Shupe, M. D., et al. (författare)
  • Overview of the MOSAiC expedition : Atmosphere
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
  •  
35.
  • Snoeijs-Leijonmalm, Pauline, 1956-, et al. (författare)
  • Unexpected fish and squid in the central Arctic deep scattering layer
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The retreating ice cover of the Central Arctic Ocean (CAO) fuels speculations on future fisheries. However, very little is known about the existence of harvestable fish stocks in this 3.3 million-square kilometer ecosystem around the North Pole. Crossing the Eurasian Basin, we documented an uninterrupted 3170-kilometer-long deep scattering layer (DSL) with zooplankton and small fish in the Atlantic water layer at 100- to 500-meter depth. Diel vertical migration of this central Arctic DSL was lacking most of the year when daily light variation was absent. Unexpectedly, the DSL also contained low abundances of Atlantic cod, along with lanternfish, armhook squid, and Arctic endemic ice cod. The Atlantic cod originated from Norwegian spawning grounds and had lived in Arctic water temperature for up to 6 years. The potential fish abundance was far below commercially sustainable levels and is expected to remain so because of the low productivity of the CAO.
  •  
36.
  • Solomon, A., et al. (författare)
  • Freshwater in the Arctic Ocean 2010-2019
  • 2021
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 17:4, s. 1081-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • U The Arctic climate system is rapidly transitioning into a new regime with a reduction in the extent of sea ice, enhanced mixing in the ocean and atmosphere, and thus enhanced coupling within the ocean-ice-atmosphere system; these physical changes are leading to ecosystem changes in the Arctic Ocean. In this review paper, we assess one of the critically important aspects of this new regime, the variability of Arctic freshwater, which plays a fundamental role in the Arctic climate system by impacting ocean stratification and sea ice formation or melt. Liquid and solid freshwater exports also affect the global climate system, notably by impacting the global ocean overturning circulation. We assess how freshwater budgets have changed relative to the 2000-2010 period. We include discussions of processes such as poleward atmospheric moisture transport, runoff from the Greenland Ice Sheet and Arctic glaciers, the role of snow on sea ice, and vertical redistribution. Notably, sea ice cover has become more seasonal and more mobile; the mass loss of the Greenland Ice Sheet increased in the 2010s (particularly in the western, northern, and southern regions) and imported warm, salty Atlantic waters have shoaled. During 2000-2010, the Arctic Oscillation and moisture transport into the Arctic are in-phase and have a positive trend. This cyclonic atmospheric circulation pattern forces reduced freshwater content on the Atlantic-Eurasian side of the Arctic Ocean and freshwater gains in the Beaufort Gyre. We show that the trend in Arctic freshwater content in the 2010s has stabilized relative to the 2000s, potentially due to an increased compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the rest of the Arctic Ocean. However, large intermodel spread across the ocean reanalyses and uncertainty in the observations used in this study prevent a definitive conclusion about the degree of this compensation.
  •  
37.
  • Stiller-Reeve, Mathew, et al. (författare)
  • Improving together: better science writing through peer learning
  • 2016
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 20, s. 2965-2973
  • Tidskriftsartikel (refereegranskat)abstract
    • Science, in our case the climate and geosciences, is increasingly interdisciplinary. Scientists must therefore com- municate across disciplinary boundaries. For this communi- cation to be successful, scientists must write clearly and con- cisely, yet the historically poor standard of scientific writing does not seem to be improving. Scientific writing must im- prove, and the key to long-term improvement lies with the early-career scientist (ECS). Many interventions exist for an ECS to improve their writing, like style guides and courses. However, momentum is often difficult to maintain after these interventions are completed. Continuity is key to improving writing. This paper introduces the ClimateSnack project, which aims to motivate ECSs to develop and continue to improve their writing and communication skills. The project adopts a peer-learning framework where ECSs voluntarily form writ- ing groups at different institutes around the world. The group members learn, discuss, and improve their writing skills to- gether. Several ClimateSnack writing groups have formed. This paper examines why some of the groups have flourished and others have dissolved. We identify the challenges involved in making a writing group successful and effective, notably the leadership of self-organized groups, and both individual and institutional time management. Within some of the groups, peer learning clearly offers a powerful tool to improve writ- ing as well as bringing other benefits, including improved general communication skills and increased confidence.
  •  
38.
  •  
39.
  • Wåhlin, Anna, 1970, et al. (författare)
  • Ice front blocking of ocean heat transport to an Antarctic ice shelf
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578, s. 568-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass loss from the Antarctic Ice Sheet to the ocean has increased in recent decades, largely because the thinning of its floating ice shelves has allowed the outflow of grounded ice to accelerate. Enhanced basal melting of the ice shelves is thought to be the ultimate driver of change, motivating a recent focus on the processes that control ocean heat transport onto and across the seabed of the Antarctic continental shelf towards the ice. However, the shoreward heat flux typically far exceeds that required to match observed melt rates, suggesting that other critical controls exist. Here we show that the depth-independent (barotropic) component of the heat flow towards an ice shelf is blocked by the marked step shape of the ice front, and that only the depth-varying (baroclinic) component, which is typically much smaller, can enter the sub-ice cavity. Our results arise from direct observations of the Getz Ice Shelf system and laboratory experiments on a rotating platform. A similar blocking of the barotropic component may occur in other areas with comparable ice–bathymetry configurations, which may explain why changes in the density structure of the water column have been found to be a better indicator of basal melt rate variability than the heat transported onto the continental shelf. Representing the step topography of the ice front accurately in models is thus important for simulating ocean heat fluxes and induced melt rates.
  •  
40.
  • Zhou, Lu, 1993, et al. (författare)
  • Early Winter Triggering of the Maud Rise Polynya
  • 2022
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 49:2
  • Tidskriftsartikel (refereegranskat)abstract
    • What triggers Maud Rise polynya, a large opening in the winter Antarctic sea ice, is still debated. We show that the upcoming opening of all Maud Rise polynyas can be detected in early winter up to four months ahead, especially since the 2002 expansion in satellite observations. In all polynya years, continuous anomalous sea ice thinning begins in May, caused by atmospheric and oceanic forcings. Dynamically, an anomalous cyclonic circulation in the atmosphere and the ocean strengthens the Weddell Gyre and exerts anomalously intense stresses on the ice. Thermodynamically, the warm water advected by the intensified circulation, and most importantly entrained into the mixed layer, thins the ice from below at the beginning of the freezing season, preconditioning the region for a polynya event months later. This four-month-ahead pattern enables early predictions of the polynya, and improved expedition planning and sensor deployment.
  •  
41.
  • Zhou, Lu, 1993, et al. (författare)
  • Sea Ice Production in the 2016 and 2017 Maud Rise Polynyas
  • 2023
  • Ingår i: Journal of Geophysical Research: Oceans. - 2169-9275 .- 2169-9291. ; 128:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea ice production within polynyas, an outcome of the atmosphere-ice-ocean interaction, is a major source of dense water and hence key to the global overturning circulation, but is poorly quantified over open-ocean polynyas. Using the two recent extensive open-ocean polynyas within the wider Maud Rise region of the Weddell Sea in 2016 and 2017, we here explore the sea ice energy budget and estimate their sea ice production based on satellite retrievals, in-situ hydrographic observations and the Japanese 55-year Reanalysis. We find that the oceanic heat flux amounts to 36.1 and 30.7Wm−2 within the 2016 and 2017 polynyas, respectively. Especially the 2017 open-ocean polynya produced nearly 200km3 of new sea ice, which is comparable to the production in the largest Antarctic coastal polynyas. Finally, we determine that ice production is highly correlated with and sensitive to skin temperature and wind speed, which affect the turbulent fluxes. It is also strongly sensitive to uncertainties in the sea ice concentration and 1,000hPa temperature, which all urgently need to be better monitored at high latitudes. Lastly, more process-oriented campaigns are required to further elucidate the role of open-ocean polynya on the local and global ocean circulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy