SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hibbett David) "

Sökning: WFRF:(Hibbett David)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hibbett, David, et al. (författare)
  • Sequence-based classification and identification of Fungi
  • 2016
  • Ingår i: Mycologia. - 0027-5514. ; 108:6, s. 1049-1068
  • Forskningsöversikt (refereegranskat)abstract
    • Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomic and metatranscriptomic studies, which limits understanding of the taxonomic diversity and metabolic properties of fungal communities. This article reviews current resources, needs, and opportunities for sequence-based classification and identification (SBCI) in fungi as well as related efforts in prokaryotes. To realize the full potential of fungal SBCI it will be necessary to make advances in multiple areas. Improvements in sequencing methods, including long-read and single-cell technologies, will empower fungal molecular ecologists to look beyond ITS and current shotgun metagenomics approaches. Data quality and accessibility will be enhanced by attention to data and metadata standards and rigorous enforcement of policies for deposition of data and workflows. Taxonomic communities will need to develop best practices for molecular characterization in their focal clades, while also contributing to globally useful datasets including ITS. Changes to nomenclatural rules are needed to enable valid publication of sequence-based taxon descriptions. Finally, cultural shifts are necessary to promote adoption of SBCI and to accord professional credit to individuals who contribute to community resources.
  •  
2.
  • Padamsee, Mahajabeen, et al. (författare)
  • The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction
  • 2012
  • Ingår i: Fungal Genetics and Biology. - : Elsevier BV. - 1087-1845 .- 1096-0937. ; 49:3, s. 217-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identified 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebi to colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is confirmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were identified although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic.
  •  
3.
  • Binder, Manfred, et al. (författare)
  • Phylogenetic and phylogenomic overview of the Polyporales
  • 2013
  • Ingår i: Mycologia. - : Informa UK Limited. - 0027-5514 .- 1557-2536. ; 105:6, s. 1350-1373
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a phylogenetic and phylogenomic overview of the Polyporales. The newly sequenced genomes of Bjerkandera adusta, Ganoderma sp., and Phlebia brevispora are introduced and an overview of 10 currently available Polyporales genomes is provided. The new genomes are 39 500 000–49 900 00 bp and encode for 12 910–16 170 genes. We searched available genomes for single-copy genes and performed phylogenetic informativeness analyses to evaluate their potential for phylogenetic systematics of the Polyporales. Phylogenomic datasets (25, 71, 356 genes) were assembled for the 10 Polyporales species with genome data and compared with the most comprehensive dataset of Polyporales to date (six-gene dataset for 373 taxa, including taxa with missing data). Maximum likelihood and Bayesian phylogenetic analyses of genomic datasets yielded identical topologies, and the corresponding clades also were recovered in the 373-taxa dataset although with different support values in some datasets. Three previously recognized lineages of Polyporales, antrodia, core polyporoid and phlebioid clades, are supported in most datasets, while the status of the residual polyporoid clade remains uncertain and certain taxa (e.g. Gelatoporia, Grifola, Tyromyces) apparently do not belong to any of the major lineages of Polyporales. The most promising candidate single-copy genes are presented, and nodes in the Polyporales phylogeny critical for the suprageneric taxonomy of the order are identified and discussed.
  •  
4.
  • Floudas, Dimitrios, et al. (författare)
  • Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii
  • 2015
  • Ingår i: Fungal Genetics and Biology. - : Elsevier BV. - 1087-1845. ; 76, s. 78-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. (C) 2015 Elsevier Inc. All rights reserved.
  •  
5.
  • Floudas, Dimitrios, et al. (författare)
  • Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling.
  • 2015
  • Ingår i: Fungal Biology. - : Elsevier BV. - 1878-6146. ; 119:8, s. 679-719
  • Tidskriftsartikel (refereegranskat)abstract
    • We amplified RPB1, RPB2, and the ITS and LSU ribosomal genes from species mostly in the phlebioid clade, focusing heavily in phanerochaetoid taxa. We performed Maximum Likelihood and Bayesian analyses for different combinations of datasets. Our results provide a strongly supported phylogenetic picture of the phlebioid clade, representing 89 species in the four genes analyses, of which 49 represent phanerochaetoid taxa. Phanerochaete sensu lato is polyphyletic and distributed across nine lineages in the phlebioid clade. Six of these lineages are associated to already described genera, while we describe the new genus Phaeophlebiopsis to accommodate Phlebiopsis-like species in one of the remaining lineages. We also propose three taxonomic transfers and describe nine new species, with four of those species currently placed in Phanerochaete sanguinea or Phanerochaete velutina. Finally, the placement of Leptoporus mollis along with other potential brown-rot species in the phlebioid clade suggests that, in addition to the Antrodia clade, brown-rot fungi may have evolved more than once in Polyporales.
  •  
6.
  • Hibbett, David S., et al. (författare)
  • Agaricomycetes
  • 2014
  • Ingår i: The Mycota. - Berlin : Springer. - 9783642553172 ; , s. 373-429
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Agaricomycetes includes ca. 21,000 described species of mushroom-forming fungi that function as decayers, pathogens, and mutualists in both terrestrial and aquatic habitats. The morphological diversity of Agaricomycete fruiting bodies is unparalleled in any other group of fungi, ranging from simple corticioid forms to complex, developmentally integrated forms (e.g., stinkhorns). In recent years, understanding of the phylogenetic relationships and biodiversity of Agaricomycetes has advanced dramatically, through a combination of polymerase chain reaction-based multilocus phylogenetics, phylogenomics, and molecular environmental surveys. Agaricomycetes is strongly supported as a clade and includes several groups formerly regarded as Heterobasidiomycetes, namely the Auriculariales, Sebacinales, and certain Cantharellales (Tulasnellaceae and Ceratobasidiaceae). The Agaricomycetes can be divided into 20 mutually exclusive clades that have been treated as orders. This chapter presents an overview of the phylogenetic diversity of Agaricomycetes, emphasizing recent molecular phylogenetic studies.
  •  
7.
  • Justo, Alfredo, et al. (författare)
  • A revised family-level classification of the Polyporales (Basidiomycota)
  • 2017
  • Ingår i: Fungal Biology. - : Elsevier BV. - 1878-6146. ; 121:9, s. 798-824
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus higher-level classification within the group is a barrier to further taxonomic revision. We amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the latter. We combined the new sequences with molecular data generated during the PolyPEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification. Eighteen clades are assigned a family name, including three families described as new (Cerrenaceae fam. nov., Gelatoporiaceae fam. nov., Panaceae fam. nov.) and fifteen others (Dacryobolaceae, Fomitopsidaceae, Grifolaceae, Hyphodermataceae, Incrustoporiaceae, Irpicaceae, Ischnodermataceae, Laetiporaceae, Meripilaceae, Meruliaceae, Phanerochaetaceae, Podoscyphaceae, Polyporaceae, Sparassidaceae, Steccherinaceae). Three clades are given informal names (/hypochnicium,/climacocystis and/fibroporia + amyloporia). Four taxa (Candelabrochete africana, Mycoleptodonoides vassiljevae, Auriporia aurea, and Tyromyces merulinus) cannot be assigned to a family within the Polyporales. The classification proposed here provides a framework for further taxonomic revision and will facilitate communication among applied and basic scientists. A survey of morphological, anatomical, physiological, and genetic traits confirms the plasticity of characters previously emphasized in taxonomy of Polyporales.
  •  
8.
  • Kohler, Annegret, et al. (författare)
  • Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:4, s. 176-410
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.
  •  
9.
  • Nagy, László G, et al. (författare)
  • Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities.
  • 2015
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 33:4, s. 959-970
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of 10 saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.
  •  
10.
  • Sanchez-Garcia, Marisol, et al. (författare)
  • Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 117:51, s. 32528-32534
  • Tidskriftsartikel (refereegranskat)abstract
    • With similar to 36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.
  •  
11.
  •  
12.
  • Zanne, Amy E, et al. (författare)
  • Fungal functional ecology: bringing a trait-based approach to plant-associated fungi.
  • 2020
  • Ingår i: Biological reviews of the Cambridge Philosophical Society. - : Wiley. - 1469-185X .- 1464-7931. ; 95:2, s. 409-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12
Typ av publikation
tidskriftsartikel (10)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hibbett, David S. (10)
Floudas, Dimitrios (7)
Riley, Robert (5)
Grigoriev, Igor V. (5)
Sun, Hui (4)
Nilsson, R. Henrik, ... (3)
visa fler...
Binder, Manfred (3)
Justo, Alfredo (3)
Larsson, Karl-Henrik (3)
Johansson, Tomas (2)
Abarenkov, Kessy (2)
Larsson, Ellen, 1961 (2)
Miettinen, Otto (2)
Tunlid, Anders (2)
Canbäck, Björn (2)
Henrissat, Bernard (2)
Salamov, Asaf (2)
Copeland, Alex (2)
Kõljalg, Urmas (1)
Larsson, Karl-Henrik ... (1)
Sánchez-García, Mari ... (1)
Ryberg, Martin (1)
Oono, Ryoko (1)
Persson, Per (1)
Aguilar-Trigueros, C ... (1)
Schoch, Conrad L. (1)
Hohmann, Stefan, 195 ... (1)
Ahrén, Dag (1)
Powell, Jeff (1)
Buscot, Francois (1)
Högberg, Nils (1)
Bentzer, Johan (1)
Lawrey, James D. (1)
Kumar, Arun (1)
Furukawa, Kentaro (1)
Ellström, Magnus (1)
Cole, James R (1)
Porras-Alfaro, Andre ... (1)
Ryvarden, Leif (1)
Bauer, Robert (1)
Pringle, Anne (1)
Lopez-Giraldez, Fran ... (1)
Sjökvist, Elisabet, ... (1)
Foster, Brian (1)
Townsend, Jeffrey (1)
Yoshinaga, Yuko (1)
Cornwell, William K. (1)
Kirk, Paul (1)
Clum, Alicia (1)
Lapidus, Alla (1)
visa färre...
Lärosäte
Lunds universitet (7)
Göteborgs universitet (5)
Mittuniversitetet (2)
Sveriges Lantbruksuniversitet (2)
Uppsala universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy