SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hicken R. J.) "

Sökning: WFRF:(Hicken R. J.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Miknaitis, G., et al. (författare)
  • The ESSENCE supernova survey : Survey optimization, observations, and supernova photometry
  • 2007
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 666:2, s. 674-693
  • Forskningsöversikt (refereegranskat)abstract
    • We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the dark energy equation-of-state parameter, w = P/(rho c(2)). We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to w for a given fixed amount of telescope time. For our survey on the CTIO 4 m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z approximate to 0: 5 +/- 0: 2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in nearly real time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their apparent brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4 m telescope's natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 Type Ia supernovae, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for all of the Type Ia supernovae found by ESSENCE and used in our measurement of w, presented in a companion paper by Wood-Vasey and coworkers.
  •  
2.
  • Narayan, G., et al. (författare)
  • LIGHT CURVES OF 213 TYPE Ia SUPERNOVAE FROM THE ESSENCE SURVEY
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 224:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1 < z < 0.81 between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is similar to 1%.
  •  
3.
  • Wood-Vasey, W. M., et al. (författare)
  • Observational constraints on the nature of dark energy : First cosmological results from the ESSENCE supernova survey
  • 2007
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 666:2, s. 694-715
  • Forskningsöversikt (refereegranskat)abstract
    • We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant.
  •  
4.
  • Keatley, P. S., et al. (författare)
  • Direct observation of magnetization dynamics generated by nanocontact spin-torque vortex oscillators
  • 2016
  • Ingår i: Physical Review B - Condensed Matter and Materials Physics. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 94:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved scanning Kerr microscopy has been used to directly image the magnetization dynamics of nanocontact (NC) spin-torque vortex oscillators (STVOs) when phase locked to an injected microwave (rf) current. The Kerr images reveal free-layer magnetization dynamics that extend outside the NC footprint, where they cannot be detected electrically, but which are crucial to phase-lock STVOs that share common magnetic layers. For a single NC, dynamics were observed not only when the STVO frequency was fully locked to that of the rf current, but also for a partially locked state characterized by periodic changes in the core trajectory at the rf frequency. For a pair of NCs, we explore the correlation between the spatial character of injection-locked dynamics and the free-running spectra. Insight gained from these images may improve understanding of the conditions required for mutual phase locking of multiple STVOs, and hence enhanced microwave power emission.
  •  
5.
  • Keatley, P. S., et al. (författare)
  • Superharmonic injection locking of nanocontact spin-torque vortex oscillators
  • 2016
  • Ingår i: Physical Review B. - : american physical society. - 2469-9950 .- 2469-9969. ; 94:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Superharmonic injection locking of single nanocontact (NC) spin-torque vortex oscillators (STVOs) subject to a small microwave current has been explored. Frequency locking was observed up to the fourth harmonic of the STVO fundamental frequency f(0) in microwave magnetoelectronic measurements. The large frequency tunability of the STVO with respect to f(0) allowed the device to be locked to multiple subharmonics of the microwave frequency f(RF), or to the same subharmonic over a wide range of fRF by tuning the dc current. In general, analysis of the locking range, linewidth, and amplitude showed that the locking efficiency decreased as the harmonic number increased, as expected for harmonic synchronization of a nonlinear oscillator. Time-resolved scanning Kerr microscopy (TRSKM) revealed significant differences in the spatial character of the magnetization dynamics of states locked to the fundamental and harmonic frequencies, suggesting significant differences in the vortex core trajectories within the same device. Superharmonic injection locking of a NC-STVO may open up possibilities for devices such as nanoscale frequency dividers, while differences in the core trajectory may allow mutual synchronization to be achieved in multioscillator networks by tuning the spatial character of the dynamics within shared magnetic layers.
  •  
6.
  • Spicer, T. M., et al. (författare)
  • Spatial mapping of torques within a spin Hall nano-oscillator
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 98:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved scanning Kerr microscopy (TRSKM) was used to study precessional magnetization dynamics induced by a radio frequency (RF) current within a Al2O3/Py(5 nm)/Pt(6 nm)/Au(150 nm) spin Hall nano-oscillator structure. The Au layer was formed into two needle-shaped electrical contacts that concentrated the current in the center of a Py/Pt mesa of 4 mu m diameter. Due to the spin Hall effect, current within the Pt layer drives a spin current into the Py layer, exerting a spin transfer torque (STT). By injecting RF current and exploiting the phase sensitivity of TRSKM and the symmetry of the device structure, the STT and Oersted field torques have been separated and spatially mapped. The STT and torque due to the in-plane Oersted field are observed to exhibit minima at the device center that is ascribed to spreading of RF current that is not observed for DC current. Torques associated with the RF current may destabilize the position of the self-localized bullet mode excited by the DC current and inhibit injection locking. The present study demonstrates the need to characterize both DC and RF current distributions carefully.
  •  
7.
  • Spicer, T. M., et al. (författare)
  • Time resolved imaging of the non-linear bullet mode within an injection-locked nano-contact spin Hall nano-oscillator
  • 2018
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 113:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved scanning Kerr microscopy (TRSKM) has been used to image precessional magnetization dynamics excited by a DC current within a nano-contact (NC) spin Hall nanooscillator (SHNO). Injection of a radio frequency (RF) current was used to phase lock the SHNO to TRSKM. The out of plane magnetization was detected by means of the polar magneto optical Kerr effect (MOKE). However, longitudinal MOKE images were dominated by an artifact arising from the edges of the Au NCs. Time resolved imaging revealed the simultaneous excitation of a nonlinear "bullet" mode at the centre of the device, once the DC current exceeded a threshold value, and ferromagnetic resonance (FMR) induced by the RF current. However, the FMR response observed for sub-critical DC current values exhibits an amplitude minimum at the centre, which is attributed to spreading of the RF spin current due to the reactance of the device structure. This FMR response can be subtracted to yield images of the bullet mode. As the DC current is increased above threshold, the bullet mode appears to increase in size, suggesting increased translational motion. The reduced spatial overlap of the bullet and FMR modes, and this putative translational motion, may impede the injection locking and contribute to the reduced locking range observed within NC-SHNO devices. This illustrates a more general need to control the geometry of an injection-locked oscillator so that the autonomous dynamics of the oscillator exhibit strong spatial overlap with those resulting from the injected signal. Published by AIP Publishing.
  •  
8.
  • Burgos-Parra, E., et al. (författare)
  • Investigation of magnetic droplet solitons using x-ray holography with extended references
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A dissipative magnetic soliton, or magnetic droplet, is a structure that has been predicted to exist within a thin magnetic layer when non-linearity is balanced by dispersion, and a driving force counteracts the inherent damping of the spin precession. Such a soliton can be formed beneath a nano-contact (NC) that delivers a large spin-polarized current density into a magnetic layer with perpendicular magnetic anisotropy. Although the existence of droplets has been confirmed from electrical measurements and by micromagnetic simulations, only a few attempts have been made to directly observe the magnetic landscape that sustains these structures, and then only for a restricted set of experimental parameter values. In this work we use and x-ray holography technique HERALDO, to image the magnetic structure of the [ Co/ Ni] x4 multilayer within a NC orthogonal pseudo spin-valve, for different range of magnetic fields and injected electric currents. The magnetic configuration imaged at -33 mA and 0.3 T for devices with 90 nm NC diameter reveals a structure that is within the range of current where the droplet soliton exist based on our electrical measurements and have it is consistent with the expected size of the droplet (similar to 100 nm diameter) and its spatial position within the sample. We also report the magnetisation configurations observed at lower DC currents in the presence of fields (0-50 mT), where it is expected to observe regimes of the unstable droplet formation.
  •  
9.
  • Keatley, P. S., et al. (författare)
  • Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting
  • 2017
  • Ingår i: Journal of Physics D-Applied Physics. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 50:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of multiple STVOs that share common magnetic layers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy