SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hines Heather M) "

Search: WFRF:(Hines Heather M)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Elsik, Christine G., et al. (author)
  • The Genome Sequence of Taurine Cattle : A Window to Ruminant Biology and Evolution
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 324:5926, s. 522-528
  • Journal article (peer-reviewed)abstract
    • To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
  •  
2.
  • Deans, Andrew R, et al. (author)
  • Finding Our Way through Phenotypes.
  • 2015
  • In: PLoS Biology. - : Public Library of Science (PLoS). - 1545-7885. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.
  •  
3.
  • Ghisbain, Guillaume, et al. (author)
  • Expanding insect pollinators in the Anthropocene
  • 2021
  • In: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 96:6, s. 2755-2770
  • Journal article (peer-reviewed)abstract
    • Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species extirpations and extinctions. Whilst negative population trends within this functional group have understandably received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adaptation to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche specialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pollinator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly species specific and context dependent, rendering generalizations of 'winning traits' complicated. This work illustrates the increasing need to consider expansion and its numerous consequences as significant facets of global changes and encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural ecosystems.
  •  
4.
  • Lhomme, Patrick, et al. (author)
  • Diversification Pattern of the Widespread Holarctic Cuckoo Bumble Bee, Bombus flavidus (Hymenoptera: Apidae) : The East Side Story
  • 2021
  • In: Insect Systematics and Diversity. - : Oxford University Press (OUP). - 2399-3421. ; 5:2, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Recent bumble bee declines have made it increasingly important to resolve the status of contentious species for conservation purposes. Some of the taxa found to be threatened are the often rare socially parasitic bumble bees. Among these, the socially parasitic bumble bee, Bombus flavidus Eversmann, has uncertain species status. Although multiple separate species allied with B. flavidus have been suggested, until recently, recognition of two species, a Nearctic Bombus fernaldae (Franklin) and Palearctic B. flavidus, was favored. Limited genetic data, however, suggested that even these could be a single widespread species. We addressed the species status of this lineage using an integrative taxonomic approach, combining cytochrome oxidase I (COI) and nuclear sequencing, wing morphometrics, and secretions used for mate attraction, and explored patterns of color polymorphism that have previously confounded taxonomy in this lineage. Our results support the conspecificity of fernaldae and flavidus; however, we revealed a distinct population within this broader species confined to eastern North America. This makes the distribution of the social parasite B. flavidus the broadest of any bumble bee, broader than the known distribution of any nonparasitic bumble bee species. Color polymorphisms are retained across the range of the species, but may be influenced by local mimicry complexes. Following these results, B. flavidusEversmann, 1852 is synonymized with Bombus fernaldae (Franklin, 1911) syn. nov. and a subspecific status, Bombus flavidus appalachiensisssp. nov., is assigned to the lineage ranging from the Appalachians to the eastern boreal regions of the United States and far southeastern Canada.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view