SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hintermann L.) "

Sökning: WFRF:(Hintermann L.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahmen, J., et al. (författare)
  • Osteochondral Lesions of the Tibial Plafond and Ankle Instability With Ankle Cartilage Lesions: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle
  • 2022
  • Ingår i: Foot & Ankle International. - : SAGE Publications. - 1071-1007 .- 1944-7876. ; 43:3, s. 448-452
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An international consensus group of experts was convened to collaboratively advance toward consensus opinions based on the best available evidence on key topics within cartilage repair of the ankle. The purpose of this article is to present the consensus statements on osteochondral lesions of the tibial plafond (OLTP) and on ankle instability with ankle cartilage lesions developed at the 2019 International Consensus Meeting on Cartilage Repair of the Ankle. Methods: Forty-three experts in cartilage repair of the ankle were convened and participated in a process based on the Delphi method of achieving consensus. Questions and statements were drafted within 4 working groups focusing on specific topics within cartilage repair of the ankle, after which a comprehensive literature review was performed and the available evidence for each statement was graded. Discussion and debate occurred in cases where statements were not agreed on in unanimous fashion within the working groups. A final vote was then held. Results: A total of 11 statements on OLTP reached consensus. Four achieved unanimous support and 7 reached strong consensus (greater than 75% agreement). A total of 8 statements on ankle instability with ankle cartilage lesions reached consensus during the 2019 International Consensus Meeting on Cartilage Repair of the Ankle. One achieved unanimous support, and seven reached strong consensus (greater than 75% agreement). Conclusions: These consensus statements may assist clinicians in the management of these difficult clinical pathologies.
  •  
2.
  • Murawski, Christopher D., et al. (författare)
  • Terminology for osteochondral lesions of the ankle: proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle
  • 2022
  • Ingår i: JOURNAL OF ISAKOS JOINT DISORDERS & ORTHOPAEDIC SPORTS MEDICINE. - : Elsevier BV. - 2059-7754 .- 2059-7762. ; 7:2, s. 62-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The evidence supporting best practice guidelines in the field of cartilage repair of the ankle is based on both low quality and low levels of evidence. Therefore, an international consensus group of experts was convened to collaboratively advance toward consensus opinions based on the best available evidence on key topics within cartilage repair of the ankle. The purpose of this article is to report the consensus statements on "terminology for osteochondral lesions of the ankle" developed at the 2019 International Consensus Meeting on Cartilage Repair of the Ankle. Methods: Forty-three international experts in cartilage repair of the ankle representing 20 countries were convened and participated in a process based on the Delphi method of achieving consensus. Questions and statements were drafted within four working groups focusing on specific topics within cartilage repair of the ankle, after which a comprehensive literature review was performed, and the available evidence for each state-ment was graded. Discussion and debate occurred in cases where statements were not agreed on in unanimous fashion within the working groups. A final vote was then held, and the strength of consensus was characterised as follows: consensus, 51%-74%; strong consensus, 75%-99%; unanimous, 100%. Results: A total of 11 statements on terminology and classification reached consensus during the 2019 Interna-tional Consensus Meeting on Cartilage Repair of the Ankle. Definitions are provided for osseous, chondral and osteochondral lesions, as well as bone marrow stimulation and injury chronicity, among others. An osteochondral lesion of the talus can be abbreviated as OLT. Conclusions: This international consensus derived from leaders in the field will assist clinicians with the appro-priate terminology for osteochondral lesions of the ankle.
  •  
3.
  • Støchkel, K., et al. (författare)
  • On the influence of water on the electronic structure of firefly oxyluciferin anions from absorption spectroscopy of bare and monohydrated ions in vacuo
  • 2013
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 135:17, s. 6485-6493
  • Tidskriftsartikel (refereegranskat)abstract
    • A complete understanding of the physics underlying the varied colors of firefly bioluminescence remains elusive because it is difficult to disentangle different enzyme-lumophore interactions. Experiments on isolated ions are useful to establish a proper reference when there are no microenvironmental perturbations. Here, we use action spectroscopy to compare the absorption by the firefly oxyluciferin lumophore isolated in vacuo and complexed with a single water molecule. While the process relevant to bioluminescence within the luciferase cavity is light emission, the absorption data presented here provide a unique insight into how the electronic states of oxyluciferin are altered by microenvironmental perturbations. For the bare ion we observe broad absorption with a maximum at 548 ± 10 nm, and addition of a water molecule is found to blue-shift the absorption by approximately 50 nm (0.23 eV). Test calculations at various levels of theory uniformly predict a blue-shift in absorption caused by a single water molecule, but are only qualitatively in agreement with experiment highlighting limitations in what can be expected from methods commonly used in studies on oxyluciferin. Combined molecular dynamics simulations and time-dependent density functional theory calculations closely reproduce the broad experimental peaks and also indicate that the preferred binding site for the water molecule is the phenolate oxygen of the anion. Predicting the effects of microenvironmental interactions on the electronic structure of the oxyluciferin anion with high accuracy is a nontrivial task for theory, and our experimental results therefore serve as important benchmarks for future calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy