SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ho Hoang Phuoc 1983) "

Search: WFRF:(Ho Hoang Phuoc 1983)

  • Result 1-37 of 37
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cheah, You Wayne, 1993, et al. (author)
  • Slurry co-hydroprocessing of Kraft lignin and pyrolysis oil over unsupported NiMoS catalyst: A strategy for char suppression
  • 2023
  • In: Chemical Engineering Journal. - 1385-8947. ; 475
  • Journal article (peer-reviewed)abstract
    • Pyrolysis oil (PO) assisted Kraft lignin (KL) liquefaction over an unsupported NiMoS catalyst in a paraffin solvent was explored in this work. A paraffin solvent was used to represent hydrogenated vegetable oil (HVO) which is a biofuel. We have for the first time showed that when co-processing Kraft lignin with pyrolysis oil in a paraffin solvent the char formation could be completely suppressed. The complex composition of PO, containing various compounds with different functional groups, was able to aid the depolymerization pathways of lignin by obstructing the condensation path of reactive lignin derivatives. To further understand the role of different functional groups present in pyrolysis oil during lignin liquefaction, we investigate the co-hydroprocessing of Kraft lignin with various oxygenate monomers using unsupported NiMoS. 4-propylguaiacol (PG) was found to be the most efficient monomer for stabilizing the reactive lignin intermediates, resulting in a low char yield (3.7%), which was 4 times lower than the char production from Kraft lignin hydrotreatment alone. The suppressed rate of lignin fragment repolymerization can be attributed to the synergistic effect of functional groups like hydroxyl (-OH), methoxy (-OCH3), and propyl (-C3H7) groups present in PG. These groups were found to be able to stabilize the lignin depolymerized fragments and blocked the repolymerization routes enabling efficient lignin depolymerization. It was found that the presence of a co-reactant like PG during the heating period of the reactor acted as a blocking agent facilitating further depolymerization routes. Finally, a reaction network is proposed describing multiple routes of lignin hydroconversion to solid char, lignin-derived monomers, dimers, and oligomers, explaining why the co-processing of pyrolysis oil and Kraft lignin completely suppressed the solid char formation.
  •  
2.
  • Ho, Hoang Phuoc, 1983, et al. (author)
  • The effect of Pt/Pd ratio on the oxidation activity and resistance to sulfur poisoning for Pt-Pd/BEA diesel oxidation catalysts with high siliceous content
  • 2022
  • In: Journal of Environmental Chemical Engineering. - : Elsevier BV. - 2213-3437 .- 2213-2929. ; 10:4
  • Journal article (peer-reviewed)abstract
    • This study investigates the effect of the Pt/Pd ratio on the oxidation activity and sulfur poisoning/regeneration of diesel oxidation catalysts (DOC) using beta zeolites with high siliceous content as support. Formation of Pt-Pd alloy leads to contraction of the cell lattice of Pt in the bimetallic catalysts, improving not only the sintering resistance of Pt but also retaining a high fraction of Pd in Pd2+ form. Moreover, the Pt-Pd alloy also improves the oxidation resistance of the particles, which enhances the activity of the catalysts for CO and C3H6 oxidation. Bimetallic catalysts also favor NO reduction at a lower temperature than the monometallic Pt although they showed lower values for the absolute conversion of NO due to a decrease in the total number of the Pt active sites. In addition, the bimetallic catalysts significantly improved the sulfur resistance as compared to the monometallic Pd catalyst. Moreover, the bimetallic catalysts could easily recover their activity for NO and C3H6 oxidation by thermal treatment either in lean conditions or in H2. The reduction with H2 was necessary to recover completely the activity of the CO and C3H8 oxidation.
  •  
3.
  • Nguyen, Khoa D., et al. (author)
  • Defect-engineered metal-organic frameworks (MOF-808) towards the improved adsorptive removal of organic dyes and chromium (vi) species from water
  • 2023
  • In: New Journal of Chemistry. - : Royal Society of Chemistry (RSC). - 1369-9261 .- 1144-0546. ; 47:13, s. 6433-6447
  • Journal article (peer-reviewed)abstract
    • In this work, two defective zirconium-based metal-organic frameworks (Zr-MOFs), MOF-808-OH and MOF-808-NH2, were synthesized by partially replacing the 1,3,5-benzenetricarboxylate building block with 5-hydroxyisophthalate and 5-aminoisophthalate, respectively. The structural features of the defective materials were analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at 77 K, and thermogravimetric analysis (TGA). Importantly, the number of defect sites determined via proton nuclear magnetic resonance (1H-NMR) analysis of the digested materials was approximately 7 mol% for MOF-808-OH and 3 mol% for MOF-808-NH2. The presence of the defect sites increased the number of acidic centers on Zr-clusters originating from missing-linker nodes which accounted for a remarkable adsorption capacity towards various anionic organic dyes and chromium (vi) species. Compared to standard MOF-808, the defect-engineered ones showed significant increments by 30-60% in trapping capacity for anionic contaminants including sunset yellow, quinoline yellow, methyl orange, and potassium dichromate, while they exhibited modest improvements by 5-15% in the removal of cationic dyes, namely malachite green and methylene blue.
  •  
4.
  • Salam, Muhammad Abdus, 1983, et al. (author)
  • Elucidating the role of NiMoS-USY during the hydrotreatment of Kraft lignin
  • 2022
  • In: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 442
  • Journal article (peer-reviewed)abstract
    • Major hurdles in Kraft lignin valorization require selective cleavage of etheric and C–C linkages and subsequent stabilization of the fragments to suppress repolymerization reactions to yield higher monomeric fractions. In this regard, we report the development of efficient NiMo sulfides and ultra-stable Y zeolites for the reductive liquefaction and hydrodeoxygenation of Kraft lignin in a Parr autoclave reactor at 400 °C and 35 bar of H2 (@25 °C). Comparing the activity test without/with catalyst, it is revealed that NiMo sulfides over ultra-stable Y zeolites (silica/alumina = 30) achieved a significant reduction (∼50 %) of the re-polymerized solid residue fraction leading to a detectable liquid product yield of 30.5 wt% with a notable monocyclic and alkylbenzenes selectivity (∼61 wt%). A physical mixture counterpart, consisting of hydrothermally synthesized unsupported NiMoS and Y30, on the other hand, shows lower selectivity for such fractions but higher stabilization of the lignin fragments due to enhanced access to the active sites. Moreover, an extended reaction time with higher catalyst loading of the impregnated NiMoY30 facilitated a remarkable alkylbenzene (72 wt%) selectivity with an increased liquid yield of 38.9 wt% and a reduced solid residue of 16.4 wt%. The reason for the high yield and selectivity over NiMoY30, according to the catalyst characterization (H2-TPR, XPS, TEM) can be ascribed to enhanced stabilization of depolymerized fragments via H2-activation at a lower temperature and high hydrodeoxygenation ability. In addition, the better proximity of the acidic and deoxygenation sites in NiMoY30 was beneficial for suppressing the formation of polycyclic aromatics.
  •  
5.
  • Salam, Muhammad Abdus, 1983, et al. (author)
  • Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio
  • 2021
  • In: Sustainable Energy and Fuels. - : Royal Society of Chemistry (RSC). - 2398-4902. ; 5:13, s. 3445-3457
  • Journal article (peer-reviewed)abstract
    • Sulfides of NiMo over a series of commercial ultra-stable Y zeolites were studied in an autoclave reactor to elucidate the effect of silica/alumina ratio (SAR = 12, 30, and 80) on the cleavage of etheric C-O (beta-O-4) and C-C (both sp(3)-sp(2) and sp(2)-sp(2)) linkages present in native/technical lignin and lignin derived bio-oils. 2-Phenethyl phenyl ether (PPE), 4,4-dihydroxydiphenylmethane (DHDPM), and 2-phenylphenol, (2PP) were examined as model dimers at 345 degrees C and 50 bar of total pressure using dodecane as the solvent. The etheric C-O hydrogenolysis activity was found to be in the order NiMoY30 > NiMoY12 > NiMoY80, despite a high initial rate of C-O cleavage over NiMoY12 owing to its high acid density. A high degree of hydrodeoxygenation (HDO) and hydrocracking reactions were observed with NiMoY30 yielding >80% of deoxygenated products of which similar to 58% are benzene, toluene, and ethylbenzenes. A similar experiment with DHDPM showed the rapid cleavage of the methylene-linked C-C dimer (sp(3)-sp(2)) to phenols and cresols even with the low acid density (high SAR) catalyst, NiMoY80. Direct hydrocracking of the recalcitrant 5-5 ' linkage in 2PP is very slow, however, it cleaved via a cascade of HDO, ring-hydrogenation, and hydrocracking reactions. A high degree of hydrogenolysis and hydrocracking occurs over NiMoY30 due to suitable balance between acidity and pore accessibility, enhanced proximity between acidic and deoxygenation sites leading to a slightly higher dispersion of Ni promoted MoS2 crystallites. Overall, the product spectrum consisted of a high yield of deoxygenated products. The carbon content on the recovered catalyst was in the range of 3-7 wt%. These results pave the way for effective catalysts to break recalcitrant linkages present in lignin to obtain a hydrocarbon-rich liquid transportation fuel. An experiment with Kraft lignin over NiMoY30 shows good selectivity for deoxygenated aromatics and cycloalkanes in the liquid phase.
  •  
6.
  • Salam, Muhammad Abdus, 1983, et al. (author)
  • One-pot reductive liquefaction of sawdust to renewables over MoO x -Al 2 O 3 variants: insight into structure-activity relationships
  • 2024
  • In: Sustainable Energy and Fuels. - 2398-4902. ; 8:12, s. 2668-2681
  • Journal article (peer-reviewed)abstract
    • Valorization of forest residual products can offer a vital pathway to derive bio-based chemicals and fuel components. Herein, we report the effective and direct conversion of sawdust biomass over a supported Mo-oxide catalyst that results in a dominant fraction of aliphatic/cyclic alkanes and alkylbenzenes with low residual solids. The reductive liquefaction was conducted in an autoclave reactor using a series of MoOx-Al2O3 variants in the range of 340-400 °C with an initial H2 pressure of 35 bar for 4 h. At 340 °C, a correlation between Mo-loadings and reactivity for depolymerization and hydrodeoxygenation was found optimal for a surface density of 3.2 Mo-atoms per nm2 corresponding to 8 wt% Mo-loading. The liquefied fraction showed high selectivity (∼38%) for the formation of cycloalkanes and alkylbenzenes. At higher temperatures (400 °C) enhanced reactivity over the optimal catalyst showed higher cycloalkane and alkylbenzenes formation (∼57%) at a low biomass-to-catalyst feed mass ratio (3 : 1). At a higher ratio (10 : 1), alkylphenols (∼41%) are the leading product fraction followed by cycloalkanes and alkylbenzenes (∼34%) with a high liquefied monomer bio-oil product yield of 39.4 wt%. Catalyst characterization via XRD, Raman, H2-TPR, and XPS analysis revealed that the origin for this reactivity arises from the Mo species formed and stabilized over the support surface. A well dispersed, octahedral, higher fraction of easily reducible Mo-species (Mo5+) was evident over the optimal catalyst which enables enhanced C-O cleavage facilitating the hydrodeoxygenation reaction. Moreover, the solid residue yield could be reduced to below 5 wt% by optimizing the reaction conditions and particle size of the sawdust.
  •  
7.
  • Achour, Abdenour, 1980, et al. (author)
  • Towards stable nickel catalysts for selective hydrogenation of biomass-based BHMF into THFDM
  • 2023
  • In: Journal of Environmental Chemical Engineering. - : Elsevier BV. - 2213-3437 .- 2213-2929. ; 11:2
  • Journal article (peer-reviewed)abstract
    • Selective transformation of BHMF (2,5-bis(hydroxymethyl)furan) to THFDM (tetrahydrofuran-2,5-dimethanol) over a variety of structured Ni/Sx-Z1−x catalysts was investigated. The effects of support, Ni loading, solvent, temperature, pressure, and particle size on the conversion and selectivity were studied. Among them, the 10 wt% Ni catalyst supported on the SiO2:ZrO2 weight ratio of 90:10 (10NiS90Z10) exhibits the best performance in terms of BHMF conversion and THFDM selectivity. Its good performance was attributed to its well-balanced properties, that depend upon the ZrO2 content of the support in combination with SiO2, the active Ni sites-support interaction, and acidity/basicity ratio of each catalyst resulting in different Ni dispersions. Importantly, the 10NiS90Z10 catalyst showed a stable selectivity to THFDM (>94%), with 99.4% conversion of BHMF during 2 h reaction time. Poor catalytic activity resulted from excessive ZrO2 content (>10 wt%). The structural, textural, and acidity properties of NiSi100−y-Zry catalysts, tuned by selectively varying the Ni amount from 5 to 15 wt%, were critically investigated using numerous material characterization techniques. Catalyst recycling experiments revealed that the catalyst could be recycled several times without any measurable loss of catalytic activity.
  •  
8.
  • Awan, Iqra Zubair, et al. (author)
  • Composition Effect on the Formation of Oxide Phases by Thermal Decomposition of CuNiM(III) Layered Double Hydroxides with M(III) = Al, Fe
  • 2024
  • In: Materials. - 1996-1944. ; 17:1
  • Journal article (peer-reviewed)abstract
    • The thermal decomposition processes of coprecipitated Cu-Ni-Al and Cu-Ni-Fe hydroxides and the formation of the mixed oxide phases were followed by thermogravimetry and derivative thermogravimetry analysis (TG – DTG) and in situ X-ray diffraction (XRD) in a temperature range from 25 to 800 °C. The as-prepared samples exhibited layered double hydroxide (LDH) with a rhombohedral structure for the Ni-richer Al- and Fe-bearing LDHs and a monoclinic structure for the CuAl LDH. Direct precipitation of CuO was also observed for the Cu-richest Fe-bearing samples. After the collapse of the LDHs, dehydration, dehydroxylation, and decarbonation occurred with an overlapping of these events to an extent, depending on the structure and composition, being more pronounced for the Fe-bearing rhombohedral LDHs and the monoclinic LDH. The Fe-bearing amorphous phases showed higher reactivity than the Al-bearing ones toward the crystallization of the mixed oxide phases. This reactivity was improved as the amount of embedded divalent cations increased. Moreover, the influence of copper was effective at a lower content than that of nickel.
  •  
9.
  • Awan, Iqra Zubair, et al. (author)
  • Design of Multicationic Copper-Bearing Layered Double Hydroxides for Catalytic Application in Biorefinery
  • 2023
  • In: ChemCatChem. - : Wiley. - 1867-3899 .- 1867-3880. ; 15:6
  • Journal article (peer-reviewed)abstract
    • Ethanol has been used as a renewable hydrogen-donor in the conversion of a lignin model molecule in subcritical conditions. Noble metal-free porous mixed oxides, obtained by activation of Cu−Ni−Al and Cu−Ni−Fe layered double hydroxide (LDH) precursors, have been used as heterogeneous catalysts for Meerwein-Ponndorf-Verley (MPV) hydrogen transfer and further hydrogenation by ethanol dehydrogenation products. Both the Cu/(Cu+Ni) ratio and the nature of the trivalent cation (Al or Fe) affect the activity of the catalysts, as well as the selectivity towards the different steps of the hydrogenation reactions and the cleavage of lignin-like phenylether bonds. Accounting for the peculiar behaviour of Cu2+ and M(III) cations in the synthesis of LDHs, the coprecipitation of the precursors has been monitored by titration experiments. Structural and textural properties of the catalysts are closely related to the composition of the LDH precursors.
  •  
10.
  • Baena-Moreno, Francisco, 1992, et al. (author)
  • Potential of organic carbonates production for efficient carbon dioxide capture, transport and storage: Reaction performance with sodium hydroxide–ethanol mixtures
  • 2023
  • In: Heliyon. - : Elsevier BV. - 2405-8440. ; 9:3
  • Journal article (peer-reviewed)abstract
    • Carbon dioxide storage is one of the main long-term strategies for reducing carbon dioxide emissions in the atmosphere. A clear example is Norway's Longship project. If these projects should succeed, the transport of huge volumes of carbon dioxide from the emissions source to the injection points may become a complex challenge. In this work, we propose the production of sodium-based organic carbonates that could be transported to storage sites and be reconverted to CO2. Solid carbonates can be transported in considerably lower volumes than gases or pressurized liquids. Sodium-based carbonates are insoluble in most of the organic solvents and will therefore precipitate in contrast to in aqueous solutions. Particularly, here we focus on sodium hydroxide-ethanol mixtures as solvents for precipitating sodium ethyl carbonate and sodium bicarbonate. Previous works on this approach used limited sodium hydroxide concentrations, which are insufficient to prove the effectiveness of the proposed process. In this paper, we studied higher sodium hydroxide concentrations in sodium hydroxide-ethanol mixtures than previously reported in the literature. To this end, we use the following strategy: (1) In-line monitoring of the formation of carbonates using an in-line FTIR; (2) In-line measurements of the weight increase, which correspond directly to the captured carbon dioxide and reveal the absorption capacity; (3) Characterization of the solids with X-ray diffraction and scanning electron microscope. Our FTIR results confirmed that both sodium ethyl carbonate and sodium bicarbonate were formed, which agrees with X-ray diffraction and scanning electron microscope. With this reactor design, the absorption capacities reached approximately 80–93% of the theoretical values (4.8–13.3 g/L respectively). We hypothesize that full conversion is hampered because the gas might take preferential paths due to gel formation during the experiments.
  •  
11.
  • Di, Wei, 1986, et al. (author)
  • CO2 hydrogenation to light olefins using In2O3 and SSZ-13 catalyst-Understanding the role of zeolite acidity in olefin production
  • 2023
  • In: Journal of CO2 Utilization. - 2212-9820. ; 72
  • Journal article (peer-reviewed)abstract
    • With the aim to explore the effect of acidic properties of zeolites in tandem catalysts on their performance for CO2 hydrogenation, two types of SSZ-13 zeolites with similar bulk composition, but different arrangements of framework Al, were prepared. Their morphology, pore structure, distribution of framework Al, surface acid strength and density, were explored. The results showed that SSZ-13 zeolites with isolated aluminum distribution could be successfully synthesized, however, they contained structural defects. During calcination, the framework underwent dealumination, resulting in weaker Brønsted acidity and lower crystallinity. The morphologies were, however, well preserved. Compared with the SSZ-13 zeolites, synthesized conventionally, these low acidity SSZ13 zeolites with isolated aluminum were good zeolite components in bifunctional catalysts for CO2 hydrogenation to light olefins. By combining with In2O3, they exhibited better catalytic performance for light olefin production during CO2 hydrogenation at low temperatures. Na+ cation exchange was used to adjust the Brønsted acid site (BAS) density with only minor changes to the cavity structure. Comparative experiments established that the BAS density of the zeolite, rather than the framework Al distribution (BAS distribution), overwhelmingly affected catalyst stability and product selectivity. A higher acid density reduced the selectivity for light olefins, while lower acid density tended to form inert coke species leading to rapid deactivation. The ideal amount of BAS density in the bifunctional catalyst was approximately 0.25 mmol/g, which exhibited 70% selectivity for light olefins among hydrocarbons, and 74% selectivity for CO without deactivation, after 12 h reaction at 325 celcius and 10 bar.
  •  
12.
  • Di, Wei, 1986, et al. (author)
  • Modulating the Formation of Coke to Improve the Production of Light Olefins from CO2 Hydrogenation over In2O3 and SSZ-13 Catalysts
  • 2023
  • In: Energy & Fuels. - 1520-5029 .- 0887-0624. ; 37:22, s. 17382-17398
  • Journal article (peer-reviewed)abstract
    • Moderately acidic aluminophosphates (SAPOs) are often integrated with methanol synthesis catalysts for the hydrogenation of CO2 to olefins, but they suffer from hydrothermal decomposition. Here, an alternative SSZ-13 zeolite with high hydrothermal stability is synthesized and coupled with an In2O3 catalyst in a hybrid system. Its performance regarding selectivity for olefins and coke formation was investigated for CO2 hydrogenation under varying temperatures and pressures. Various reactions occur, producing mainly CO and different hydrocarbons. The results indicate that the hydrogenation of hydrocarbons are dominant at high temperatures (around 400 °C) over SSZ-13 zeolite with a high acid density and that the coke deposition rate is slow. Polymethylbenzenes are the main coke species, but the selectivity for light olefins is low among hydrocarbons at high temperatures. However, at low temperatures (around 325 °C), and especially under high pressure (40 bar), methanol disproportionation becomes significant. This results in an increased selectivity for light olefins; however, it also leads to a rapid coke deposition, which gives inactive adamantanes as the main coke species that block the pores and cause rapid deactivation. However, after coking at 325 °C and regeneration at 400 °C under the reaction atmosphere, the accumulated adamantanes can be decomposed into smaller coke species, which reopens the channel structure and generates modulated active sites within the zeolite, resulting in a higher yield of olefins without deactivation. The performances of acidic SSZ-13 zeolites, with varying ratios of Si/Al in transient experiments, further verified that a dynamic balance exists between the formation and degradation of coke within the SSZ-13 zeolite during a long-term CO2 hydrogenation reaction. This balance can be achieved by optimizing the reaction conditions to match the acid density of the catalyst. Using the conditions of 20 bar and 375 °C, with a H2 to CO2 mole ratio of 3, the results obtained for the precoked hybrid catalysts of In2O3 and SSZ-13 (Si/Al = 25) exhibited very stable activity, with the selectivity for light olefins (based on hydrocarbons formed) of max. 70% after 100 h time-on-stream. This work provides new insights into the design of stable hybrid catalysts, especially the influence of a precoking process for SSZ-13 zeolite in the production of light olefins.
  •  
13.
  • Feizie Ilmasani, Rojin, 1989, et al. (author)
  • Deactivation of phosphorus-poisoned Pd/SSZ-13 for the passive adsorption of NOx
  • 2022
  • In: Journal of Environmental Chemical Engineering. - : Elsevier BV. - 2213-3437 .- 2213-2929. ; 10:3
  • Journal article (peer-reviewed)abstract
    • Automotive catalysts can be exposed to various poisonous substances that can cause physical or chemical deactivation. One of such poisons is phosphorous, which originates from lubricant oils. This study focuses on the phosphorus deactivation of Pd/SSZ-13 used as a passive NOx adsorber (PNA). A clear deactivation caused by phosphorus was observed, and it was increased by increasing the content of phosphorous. It was concluded that phosphorous can cause both physical and chemical deactivation. This was evident from XPS analysis, where the presence of phosphorus pentoxide (P2O5) causes physical deactivation whereas metaphosphate (PO3-) and phosphate (PO43-) cause chemical deactivation. Also, it was shown that metaphosphates (PO3-) become the dominant phosphorous species at higher P concentrations. Lesser amounts of O2 were released in P-poisoned Pd/SSZ-13, as was found in oxygen TPD when increasing the P concentration, due to the presence of more PO3- species. Furthermore, XRD and 27Al NMR analyses revealed that phosphorus also interacted with alumina in the zeolite framework by forming Al-O-P species; this was also supported by SEM-EDX, where there was a clear overlap of P with Al and Pd spectra. DRIFTS analysis showed that OH groups in contact with the zeolite structure became contaminated by phosphorus and caused a chemical deactivation of Pd/SSZ-13. It was also found that, during multiple cycles, the PNA capacity decreased for phosphorus-poisoned samples. This was caused by the transformation of P2O5, which causes physical blocking, to PO3-, which interacts chemically with the palladium species.
  •  
14.
  • Feizie Ilmasani, Rojin, 1989, et al. (author)
  • Investigation of CO Deactivation of Passive NOx Adsorption on La Promoted Pd/BEA
  • 2022
  • In: Emission Control Science and Technology. - : Springer Science and Business Media LLC. - 2199-3629 .- 2199-3637. ; 8:1-2, s. 63-77
  • Journal article (peer-reviewed)abstract
    • Passive NOx adsorption (PNA) is a method, in which NOx can be stored at low temperatures and released at higher temperatures where the urea decomposition is functional during selective catalytic reduction (i.e., above 180–200 °C). We have studied the promotion of Pd/BEA with La as a PNA in the presence of high CO concentration. Both the reference and promoted samples exhibited a significant loss of NOx adsorption/desorption capacity after multiple cycles using 4000 ppm CO. However, already after 5 cycles, 99% of the NOx released between 200 and 400 °C was lost for Pd/BEA, compared to only 64% for Pd-La/BEA, which thereafter was stable. XPS and O2-TPD clearly showed that the Pd species were influenced by La. The PNA deactivation in the presence of CO could be related to Pd reduction followed by migration and the formation of more PdOx clusters, as observed by O2-TPD analysis. Interestingly, significantly more PdOx clusters formed on Pd/BEA after 10 cycles compared to Pd-La/BEA.
  •  
15.
  • Friberg, Ida, 1990, et al. (author)
  • Structure and performance of zeolite supported Pd for complete methane oxidation
  • 2021
  • In: Catalysis Today. - : Elsevier BV. - 0920-5861. ; 382, s. 3-12
  • Journal article (peer-reviewed)abstract
    • The influence of zeolite support materials and their impact on CH oxidation activity was studied utilizing Pd supported on H-beta and H-SSZ-13. A correlation between CH oxidation activity, Si/Al ratio (SAR), the type of zeolite framework, reduction-oxidation behaviour, and Pd species present was found by combining catalytic activity measurements with a variety of characterization methods (operando XAS, NH -TPD, SAXS, STEM and NaCl titration). Operando XAS analysis indicated that catalysts with high CH oxidation activity experienced rapid transitions between metallic- and oxidized-Pd states when switching between rich and lean conditions. This behaviour was exhibited by catalysts with dispersed Pd particles. By contrast, the formation of ion-exchanged Pd and large Pd particles appeared to have a detrimental effect on the oxidation-reduction behaviour and the conversion of CH . The formation of ion-exchanged Pd and large Pd particles was limited by using a highly siliceous beta zeolite support with a low capacity for cation exchange. The same effect was also found using a small-pore SSZ-13 zeolite due to the lower mobility of Pd species. It was found that the zeolite support material should be carefully selected so that the well-dispersed Pd particles remain, and the formation of ion-exchanged Pd is minimized. 4 4 3 4 4 2+ 2+ 2+
  •  
16.
  • Ho, Hoang Phuoc, 1983, et al. (author)
  • Effect of the Preparation Methods on the Physicochemical Properties of Indium-Based Catalysts and Their Catalytic Performance for CO 2 Hydrogenation to Methanol
  • 2024
  • In: Energy & Fuels. - 1520-5029 .- 0887-0624. ; 38:6, s. 5407-5420
  • Journal article (peer-reviewed)abstract
    • Indium oxides (In2O3) and indium oxides supported zirconia (ZrO2) have been known possible alternatives for conventional copper-based catalysts in the CO2-hydrogenation to methanol. This study aims to investigate the effect of preparation techniques on the physicochemical properties of indium-based materials and their catalytic performance for the hydrogenation of CO2 to methanol. Two series of both single oxide In2O3 and binary In2O3-ZrO2 have been synthesized by combustion, urea hydrolysis, and precipitation with different precipitating agents (sodium carbonate and ammonia/ethanol solution). Physicochemical properties of materials are characterized by elemental analysis, XRD, N2 physisorption, SEM/EDX, micro-Raman, XPS, H2-TPR, and CO2-TPD. Cubic In2O3 was the common phase generated by all four synthesis methods, except for urea hydrolysis, where rhombohedral In2O3 was additionally present. The combustion method produced the materials with the lowest specific surface areas while the precipitation using ammonia/ethanol aided in creating more oxygen defects. The synthesis methods strongly influenced the degree of interaction between the oxides and resulted in improvements in properties that boosted the catalytic performance of the binary oxides compared to their single-oxide counterparts.
  •  
17.
  • Ho, Hoang Phuoc, 1983, et al. (author)
  • Facile coating of Co3O4 on open-cell metallic foam for N2O catalytic decomposition
  • 2022
  • In: Chemical Engineering Research and Design. - : Elsevier BV. - 0263-8762 .- 1744-3563. ; 188, s. 166-178
  • Journal article (peer-reviewed)abstract
    • Co3O4 coated on open-cell metallic foams, which can merge the catalytic activity of Co3O4 and advantages derived from the geometry of the support, are promising for environ-mental applications such as the decomposition of N2O (deN(2)O). This study demonstrates how it is possible to easily and reproducibly prepare a well-adhered layer of Co3O4 with a similar specific surface area as the materials prepared with the precipitation method (similar to 23 m(2) g(-1) c(oating)) and controlled thickness on FeCrAlloy open-cell foams of different porosity and dimension by the electrosynthesis of Co(OH)(2) followed by thermal treatment (600 degrees C). The obtained structured catalysts show stable performance after three cycles of catalytic decomposition of N2O between 250 and 550 degrees C, with a similar T-50 of approximately 460 degrees C, which is comparable to the combustion or precipitated catalysts but pro-vides a lower pressure drop. Under the operating conditions with a sequential test, the presence of NO and/or O-2 in the feed gas inhibits partially the catalytic activity of the structured catalysts while the presence of H2O shows a slight enhancement in the N2O conversion at a temperature above 450 degrees C.(c) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
  •  
18.
  • Ho, Hoang Phuoc, 1983, et al. (author)
  • Promotion effect of rare earth elements (Ce, Nd, Pr) on physicochemical properties of M-Al mixed oxides (M = Cu, Ni, Co) and their catalytic activity in N 2 O decomposition
  • 2021
  • In: Journal of Materials Science. - : Springer Science and Business Media LLC. - 0022-2461 .- 1573-4803. ; 56:27, s. 15012-15028
  • Journal article (peer-reviewed)abstract
    • A series of M-AlOx mixed oxides (M = Cu, Co, Ni) with the addition of high loadings of rare earth elements (REE, R = Ce, Nd, Pr; R0.5M0.8Al0.2, molar ratio) were investigated in N2O decomposition. The precursors were prepared by coprecipitation and subsequent calcination at 600 °C. The obtained mixed metal oxides were characterized by X-ray diffraction with Rietveld analysis, N2 sorption, and H2 temperature-programmed reduction. Depending on the nature of REE and the initial M-Al system, R cations could be separately segregated in oxide form or coordinated with the transition metal cations and form mixed structures. The addition of Ce3+ consistently led to nanocrystalline CeO2 mixed with the divalent oxides, whereas the addition of Nd3+ or Pr3+ resulted in the formation of their respective oxide phases as well as perovskites/Ruddlesden–Popper phases. The presence of REE modified the textural and redox properties of the calcined materials. The rare earth element-induced formation of low-temperature reducible MOx species that systematically improved the N2O decomposition on the modified catalysts compared to the pristine M-Al materials by the order of Co > Ni > Cu. The Ce0.5Co0.8Al0.2 catalyst revealed the highest activity and remained stable (approximately 90% of N2O conversion) for 50 h during time-on-stream in 1000 ppm N2O, 200 ppm NO, 20 000 ppm O2, 2500 ppm H2O/N2 balance at WHSV = 16 L g−1 h−1.
  •  
19.
  • Ho, Hoang Phuoc, 1983, et al. (author)
  • Role of the supports during phosphorus poisoning of diesel oxidation catalysts
  • 2023
  • In: Chemical Engineering Journal. - 1385-8947. ; 468
  • Journal article (peer-reviewed)abstract
    • Phosphorus (P) poisoning is one of the main factors accounting for the deactivation of diesel oxidation catalysts (DOC) apart from sulfur poisoning and sintering of the Pt active sites. This study compares the impact of P with loading up to 2.4 wt% on the catalytic performance of monometallic and bimetallic Pt-Pd catalysts using alumina and high silica BEA zeolites as the supports. P poisoning caused deactivation for CO, C3H6, C3H8 and NO oxidation; however, the degree of the impact of P in terms of temperatures at which 50% of the component is converted (T50) depends not only on the types of the active phase (Pt and Pt-Pd) but also on the types of supports (alumina and BEA zeolite). The influence of P impregnation on the textural properties of the materials is more significant for zeolite than alumina-based catalysts, which is in line with the activity measurements. A weak interaction between P and high silica zeolite resulted in the formation of a prominent fraction of P2O5 in the P-Pt/BEA, whereas a strong binding between P and alumina accounted for a dominant fraction of phosphate in the P-Pt/Al2O3 as revealed by XPS and NMR measurements. Phosphorus compounds partially covered the available surface of the active sites and this lowered the catalytic activity. For alumina-based catalysts, P mainly reacted with the support and only deactivated a part of the active noble metals. Whereas, for zeolite-based catalysts, P existed mainly in the form of phosphorus oxides that significantly blocked the catalyst surface and thereby deactivated more of the available active sites than that on alumina-based materials, which is consistent with the CO chemisorption data.
  •  
20.
  • Ho, Hoang Phuoc, 1983, et al. (author)
  • The role of Pd-Pt Interactions in the Oxidation and Sulfur Resistance of Bimetallic Pd-Pt/γ-Al2O3 Diesel Oxidation Catalysts
  • 2021
  • In: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 1520-5045 .- 0888-5885. ; 60:18, s. 6596-6612
  • Journal article (peer-reviewed)abstract
    • Diesel oxidation catalysts (DOC) were investigated for oxidation activity, NO conversion stability, and sulfur poisoning/regeneration on Pd/Al2O3, Pt/Al2O3, and Pd-Pt/Al2O3 catalysts. The Pd/Al2O3 catalyst was more active for CO and hydrocarbon (C3H6 and C3H8) oxidation, while the Pt/Al2O3 catalyst efficiently oxidized NO. The formation of a Pd-Pt alloy in the Pd-Pt/Al2O3 catalyst maintained Pd in a more reduced phase, resulting in the superior activity of this catalyst for the oxidation of CO, C3H6, and NO in comparison with its monometallic counterparts. The Pd-Pt alloy not only provided more low-temperature activity but also retained the stability of NO oxidation. The Pd-Pt alloy also favored the spillover of SO2 to the alumina support, resulting in significantly higher adsorption capacity of the Pd-Pt/Al2O3 catalyst, extensively prolonging its lifetime. However, the stable sulfates on Pd-Pt/Al2O3 made it difficult to completely regenerate the catalyst. The bimetallic sample showed higher activity for CO, C3H8, and C3H6 after sulfur poisoning and regeneration.
  •  
21.
  • Jonsson, Rasmus, 1989, et al. (author)
  • The Impact of Lanthanum and Zeolite Structure on Hydrocarbon Storage
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:5
  • Journal article (peer-reviewed)abstract
    • Hydrocarbon traps can be used to bridge the temperature gap from the cold start of a vehicle until the exhaust after-treatment catalyst has reached its operating temperature. In this work, we investigate the effect of zeolite structure (ZSM-5, BEA, SSZ-13) and the effect of La addition to H-BEA and H-ZSM-5 on the hydrocarbon storage capacity by temperature-programmed desorption and DRIFT spectroscopy. The results show that the presence of La has a significant effect on the adsorption characteristics of toluene on the BEA-supported La materials. A low loading of La onto zeolite BEA (2% La-BEA) improves not only the toluene adsorption capacity but also the retention of toluene. However, a higher loading of La results in a decrease in the adsorbed amount of toluene, which likely is due to partial blocking of the pore of the support. High loadings of La in BEA result in a contraction of the unit cell of the zeolite as evidenced by XRD. A synergetic effect of having simultaneously different types of hydrocarbons (toluene, propene, and propane) in the feed is found for samples containing ZSM-5, where the desorption temperature of propane increases, and the quantity that desorbed increases by a factor of four. This is found to be due to the interaction between toluene and propane inside the structure of the zeolite.
  •  
22.
  • Le, Ha V., et al. (author)
  • A sulfonate ligand-defected Zr-based metal-organic framework for the enhanced selective removal of anionic dyes
  • 2024
  • In: RSC Advances. - 2046-2069. ; 14:23, s. 16389-16399
  • Journal article (peer-reviewed)abstract
    • In this work, we introduce a novel defective analogue of the representative 6-connected zirconium-based metal-organic framework (MOF-808), by employing 5-sulfoisophthalic acid monosodium salt (H2BTC-SO3Na) as a defect inducer via a mixed-linker approach. The structural integrity and different physicochemical properties were investigated by various characterization techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen physisorption at 77 K. Additionally, proton nuclear magnetic resonance (1H-NMR), energy-dispersive X-ray (EDX), and inductively coupled plasma optical emission spectroscopy (ICP-OES) were employed to confirm the presence of 6.9 mol% of the 5-sulfoisophthalate ligand within the highly crystalline MOF-808 structure. The defective material exhibited significant enhancements in the removal efficiency of various organic dyes, including approximately 64% and 77% for quinoline yellow and sunset yellow, and 56% and 13% for rhodamine B and malachite green, compared to its pristine counterpart. Importantly, the defective MOF-808 showed a remarkable selectivity toward anionic species in binary-component dyes comprising both anionic and cationic dyes.
  •  
23.
  • Le, Ha Vu, et al. (author)
  • Bacterial Cellulose Aerogels Derived from Pineapple Peel Waste for the Adsorption of Dyes
  • 2023
  • In: ACS Omega. - 2470-1343. ; 8:37, s. 33098-34195
  • Journal article (peer-reviewed)abstract
    • Valorization of pineapple peel waste is an attractive research topic because of the huge quantities of this byproduct generated from pineapple processing industries. In this study, the extract from pineapple waste was collected to produce a hydrogel-like form containing bacterial cellulose fibers with a three-dimensional structure and nanoscale diameter by the Acetobacter xylinum fermentation process. The bacterial cellulose suspension was subsequently activated by freeze-drying, affording lightweight aerogels as potential adsorbents in wastewater treatment, in particular the adsorptive removal of organic dyes. Intensive tests were carried out with the adsorption of methylene blue, a typical cationic dye, to investigate the influence of adsorption conditions (temperature, pH, initial dye concentration, time, and experiment scale) and aerogel-preparation parameters (grinding time and bacterial cellulose concentration). The bacterial cellulose-based aerogels exhibited high adsorption capacity not only for methylene blue but also for other cationic dyes, including malachite green, rhodamine B, and crystal violet (28-49 mg/g). However, its activity was limited for most of the anionic dyes, such as methyl orange, sunset yellow, and quinoline yellow, due to the repulsion of these anionic dyes with the aerogel surface, except for the case of congo red. It is also an anionic dye but has two amine groups providing a strong interaction with the hydroxyl group of the aerogel via hydrogen bonding. Indeed, the aerogel has a substantially large congo red-trapping capacity of 101 mg/g. Notably, the adsorption process exhibited similar performances, upscaling the solution volume to 50 times. The utilization of abundant agricultural waste in the simple aerogel preparation to produce a highly efficient and biodegradable adsorbent is the highlight of this work.
  •  
24.
  • Le, Ha V., et al. (author)
  • Stepwise conversion of methane to methanol on Cu and Fe/zeolites prepared in solid state: the effect of zeolite type and activation temperature
  • 2023
  • In: Journal of Chemical Technology and Biotechnology. - : Wiley. - 1097-4660 .- 0268-2575. ; 98:11, s. 2716-2725
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Grand efforts have been recently devoted to the development of catalysts based on the excellent performance of Cu- and Fe-dependent enzymes in methanotrophic bacteria for the partial oxidation of methane to methanol under ambient conditions. As a continuation of the study on the stepwise manner for this conversion over zeolite-based catalysts, in this work, the effects of zeolite topology and activation temperature on the catalytic performance of Cu- and Fe-containing zeolites were investigated. RESULTS: Cu species exchanged in the medium-pore zeolites (mordenite, ZSM-5, and ferrierite) afforded better methanol production, while large-pore zeolites (zeolite β and zeolite γ) were inappropriate to accommodate active Cu sites. Notably, Cu/silicalite-1 containing CuO species was also reactive to methane after the activation in O2, yielding a minor methanol amount. Furthermore, the activity of Fe/mordenite towards the methanol in the O2-assisted procedure was reported for the first time but with a much lower yield as compared to that of Cu/mordenite. The methanol yield over Cu/mordenite increased with the activation temperature because increasing the activation temperature favored the Cu-exchange degree with a higher priority at the side pockets as compared to the main channels of mordenite, as evidenced from infrared analysis. CONCLUSION: The selective oxidation of methane to methanol by O2 via a stepwise manner can be obtained over both ion-exchanged Cu species and well-dispersed CuO nanoparticles with better activity being recorded for the former. The activity of Cu-exchanged zeolites was considerably dependent on the zeolite topology and the charge-balancing position of the Cu2+ cations.
  •  
25.
  • Leventaki, Emmanouela, 1996, et al. (author)
  • Aqueous mineral carbonation of three different industrial steel slags: Absorption capacities and product characterization
  • 2024
  • In: Environmental Research. - 0013-9351 .- 1096-0953. ; 252
  • Journal article (peer-reviewed)abstract
    • Heavy carbon industries produce solid side stream materials that contain inorganic chemicals like Ca, Na, or Mg, and other metals such as Fe or Al. These inorganic compounds usually react efficiently with CO2 to form stable carbonates. Therefore, using these side streams instead of virgin chemicals to capture CO2 is an appealing approach to reduce CO2 emissions. Herein, we performed an experimental study of the mineral carbonation potential of three industrial steel slags via aqueous, direct carbonation. To this end, we studied the absorption capacities, reaction yields, and physicochemical characteristics of the carbonated samples. The absorption capacities and the reaction yields were analyzed through experiments carried out in a reactor specifically designed to work without external stirring. As for the physicochemical characterization, we used solid-state Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Using this reactor, the absorption capacities were between 5.8 and 35.3 g/L and reaction yields were in the range of 81–211 kg CO2/ton of slag. The physicochemical characterization of the solid products with solid FTIR, XRD and SEM indicated the presence of CaCO3. This suggests that there is potential to use the carbonated products in commercial applications.
  •  
26.
  • Leventaki, Emmanouela, 1996, et al. (author)
  • In-Line Monitoring of Carbon Dioxide Capture with Sodium Hydroxide in a Customized 3D-Printed Reactor without Forced Mixing
  • 2022
  • In: Sustainability. - : MDPI AG. - 2071-1050. ; 14:17
  • Journal article (peer-reviewed)abstract
    • Many industrial processes make use of sodium because sodium is the fifth most abundant metal and the seventh most abundant element on Earth. Consequently, there are many sodium-containing industrial wastes that could potentially be used for carbon capture, paving the way towards a circular and biobased economy. For example, a common industrial chemical is NaOH, which is found in black liquor, a by-product of the paper and pulp industry. Nonetheless, the literature available on CO2 absorption capacity of aqueous NaOH is scarce for making a fair comparison with sodium-containing waste. Therefore, to fill this gap and set the foundation for future research on carbon capture, the CO2 absorption capacity of NaOH solutions in a concentration range of 1–8 w/w% was evaluated, a wider range compared with currently available data. The data set presented here enables evaluating the performance of sodium-based wastes, which are complex mixtures and might contain other compounds that enhance or worsen their carbon capture capacity. We designed a customized reactor using a 3D-printer to facilitate in-line measurements and proper mixing between phases without the energy of stirring. The mixing performance was confirmed by computational fluid dynamics simulations. The CO2 absorption capacity was measured via weight analysis and the progress of carbonation using a pH meter and an FTIR probe in-line. At 5 w/w% NaOH and higher, the reaction resulted in precipitation. The solids were analyzed with X-ray diffraction and scanning electron microscope, and nahcolite and natrite were identified. With our setup, we achieved absorption capacities in the range of 9.5 to 78.9 g CO2/L for 1 w/w% and 8 w/w% of NaOH, respectively. The results are in fair agreement with previously reported literature, suggesting that non-forced mixing reactors function for carbon capture without the need of stirring equipment and a possible lower energy consumption.
  •  
27.
  • Nguyen, Hanh N. H., et al. (author)
  • Bacterial Cellulose-Based Material from Coconut Water as Efficient Green Adsorbent for Heavy Metal Cations
  • 2023
  • In: Chemical Engineering and Technology. - 0930-7516 .- 1521-4125. ; 46:12, s. 2547-2559
  • Journal article (peer-reviewed)abstract
    • Nata de coco produced via coconut water fermentation using Acetobacter xylinum was directly applied to remove metal cations in aqueous solutions without any further chemical modification. Bacterial cellulose, contributing just 0.8 wt % to nata de coco, were randomly distributed and interconnected, yielding a three-dimensional framework with high crystallinity and porosity. Due to these characteristics and the abundant presence of electron-rich hydroxyl groups, unmodified bacterial cellulose in nata de coco exhibited a strong affinity to metal cations in water. The adsorption efficiency of nata de coco can be significantly improved to & SIM;30 and & SIM;45 mg g(-1) for Pb2+ and Fe3+, respectively, by decreasing its size by grinding to decrease its size. Notably, nata de coco can adsorb multiple cations and the uptakes were almost similar for a 100-fold scaled-up adsorption volume.
  •  
28.
  • Ojagh, Houman, 1976, et al. (author)
  • Effect of DMSO on the catalytical production of 2,5-bis(hydoxymethyl)furan from 5-hydroxymethylfurfural over Ni/SiO2 catalysts
  • 2022
  • In: Reaction Chemistry and Engineering. - : Royal Society of Chemistry (RSC). - 2058-9883. ; 7:1, s. 192-200
  • Journal article (peer-reviewed)abstract
    • Hydroconversion of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydoxymethyl)furan (BHMF) was studied over mono- and bimetallic supported catalysts. It was found that monometallic Ni/SiO2 catalysts exhibited superior performance with a total yield of BHMF of up to 99 wt%. This excellent performance may be attributed to higher Ni dispersion and low acidity of the support. Dimethyl sulfoxide (DMSO) is often present in HMF, due to the route used for its synthesis. DMSO adsorption caused a clear reduction of Ni/SiO2 performance for the HMF hydrodeoxygenation reaction. Characterization of the spent catalysts was performed using HAADF-STEM-EDX, Raman, ICP, and XPS spectroscopies, and showed the presence of sulfur and graphitic carbon, which could explain the deactivation.
  •  
29.
  • Olsson Månsson, Emma, 1992, et al. (author)
  • Removal of Inorganic Impurities in the Fast Pyrolysis Bio-oil Using Sorbents at Ambient Temperature
  • 2024
  • In: Energy & Fuels. - 1520-5029 .- 0887-0624. ; 38:1, s. 414-4254
  • Journal article (peer-reviewed)abstract
    • Fast pyrolysis bio-oil (FPBO) sourced from residual biomass waste (such as sawdust) is a promising feedstock that may be used for biofuel production. Their inorganic elements may, however, vary and cause deactivation of the catalysts in the hydrodeoxygenation (HDO) upgrading biorefinery unit. It was found that the use of zeolite Y and strong acidic ion-exchange resins as adsorbents was almost equally efficient in lowering the concentrations of Ca from <10 to <1 ppm and of Fe, K, and Mg to <0.3 ppm in FPBO at 30 °C, atmospheric pressure, and 4 h adsorption time. The removal efficiency of zeolite and resins exceeded 85–98% (detection limit) of these particular elements. For the first time for the FPBO, phosphorus was reported as being successfully targeted by aluminum oxide, being lowered from 1 ppm to <0.1 ppm, which is a reduction of at least 90%. Characterization of the oil and sorbents suggests that the surface acidity affects the removal efficiency of these elements from FPBO. Organic compounds in the pyrolysis oil, including isopropanol, lactic acid, hydroxy acetone, furfural, guaiacol, and levoglucosan, were semiquantified using two-dimensional gas chromatography coupled with mass spectrometry (GCxGC-MS). Compared to the fresh oil, the compositions and contents of these organic compounds were not impacted significantly by the sorbents under these mild operating conditions. This research indicates that inorganic impurities present in bio-oils can be removed, and thus, they may be considered feedstocks for producing biofuels with less deactivation of HDO catalysts.
  •  
30.
  • Schiaroli, Nicola, et al. (author)
  • Efficient low-loaded ternary Pd-In2O3-Al2O3 catalysts for methanol production
  • 2023
  • In: Journal of Catalysis. - 0021-9517 .- 1090-2694. ; 424, s. 140-151
  • Journal article (peer-reviewed)abstract
    • Pd-In2O3 catalysts are among the most promising alternatives to Cu-ZnO-Al2O3 for synthesis of CH3OH from CO2. However, the intrinsic activity and stability of In2O3 per unit mass should be increased to reduce the content of this scarcely available element and to enhance the catalyst lifetime. Herein, we propose and demonstrate a strategy for obtaining highly dispersed Pd and In2O3 nanoparticles onto an Al2O3 matrix by a one-step coprecipitation followed by calcination and activation. The activity of this catalyst is comparable with that of a Pd-In2O3 catalyst (0.52 vs 0.55 gMeOH h−1 gcat-1 at 300 °C, 30 bar, 40,800 mL h−1 gcat-1) but the In2O3 loading decreases from 98 to 12 wt% while improving the long-term stability by threefold at 30 bar. In the new Pd-In2O3-Al2O3 system, the intrinsic activity of In2O3 is highly increased both in terms of STY normalized to In specific surface area and In2O3 mass (4.32 vs 0.56 g gMeOH h−1 gIn2O3-1 of a Pd- In2O3 catalyst operating at 300 °C, 30 bar, 40,800 mL h−1 gcat-1).The combination of ex situ and in situ catalyst characterizations during reduction provides insights into the interaction between Pd and In and with the support. The enhanced activity is likely related to the close proximity of Pd and In2O3, wherein the H2 splitting activity of Pd promotes, in combination with CO2 activation over highly dispersed In2O3 particles, facile formation of CH3OH.
  •  
31.
  • Shao, Jieling, 1993, et al. (author)
  • Pt-based catalysts for NOx reduction from H2 combustion engines
  • 2024
  • In: Catalysis Science and Technology. - 2044-4753 .- 2044-4761. ; 14:11, s. 3219-3234
  • Journal article (peer-reviewed)abstract
    • Platinum supported on SSZ-13 zeolite has been found to be a potential catalyst for the selective catalytic reduction of NO by H-2. This work has studied the effects of the H-2/NO molar feed ratios (0/4.4/8.8/13.2) and the impact of water on the performance of the H-2-SCR of NO on the Pt/SSZ-13 catalyst. A higher H-2/NO ratio promoted the start of the reaction at lower temperatures and favoured the production of N-2. The effect of Pt loadings was also studied with three loadings of 0.5/1.0/2.0 wt%. It was found that the 0.5 wt% Pt sample displayed the highest N-2 selectivity of 75%. In addition, an inhibiting effect of water for H-2-SCR at low temperatures was proved. Pt/SSZ-13 has shown good hydrothermal durability after 6 h in total ageing pretreatment at 800 degrees C and interestingly the nitrogen formation even increased. The support effect of SSZ-13, BETA and Al2O3 on H-2-SCR was evaluated in terms of catalytic performance and their catalytic durabilities by hydrothermal ageing experiments, showing that zeolites are significantly better for H-2 SCR. In situ DRIFT measurements helped to explore the mechanism of H-2-SCR on the Pt catalyst. A careful design of the measurements was used to distinguish the overlapping peaks of the water on the DRIFT spectrum. NH4+ ions are formed and it was shown that they play a role as intermediates during the reaction to assist the NO reduction.
  •  
32.
  • Sharma, Poonam, 1990, et al. (author)
  • Novel catalyst configuration to boost the yield of longer hydrocarbons from methanol-mediated CO 2 hydrogenation
  • 2023
  • In: Journal of CO2 Utilization. - 2212-9820. ; 74
  • Journal article (peer-reviewed)abstract
    • Various C1 feedstocks and lower hydrocarbons (C2-C4) can be produced from CO2 hydrogenation, which is an important way to utilize excess CO2 and provide alternative fuel options for dwindling fossil fuels. Herein, a novel two-bed catalytic system was developed to increase the yield of liquid range hydrocarbons, where the first catalytic bed was composed of In2O3-ZrO2 (13 wt. In %)/HZSM-5 and the second bed was a desilicated HZSM-5 placed downstream from the first bed. A maximum hydrocarbon selectivity was found to be about 86% with 7.2% CO2 conversion at 533 K, while conversion increased up to 19.3% with 71.2% hydrocarbon selectivity at 623 K while keeping the pressure at 4.0 MPa. The selectivity of longer liquid range hydrocarbons (C8-C12) was increased from 29.2% to 42.4% using the oligomerization process in which the produced lower olefins from the first bed were oligomerized to enhance the liquid range hydrocarbon over desilicated HZSM-5. Additionally, a comparative study was carried out to examine the effect of desilication over HZSM-5 having different silica-to-alumina ratios of 24 and 59. Moreover, detailed characterizations were carried out before and after the desilication of the HZSM-5 to correlate catalytic activities with physical and chemical properties of the catalysts. The results suggest that a two-bed catalytic system is a promising option to increase the yield of liquid range hydrocarbons from methanol-mediated CO2 hydrogenation while there was a negligible effect on CO2 conversion due to the second bed.
  •  
33.
  • Sharma, Poonam, 1990, et al. (author)
  • Role of ZrO 2 and CeO 2 support on the In 2 O 3 catalyst activity for CO 2 hydrogenation
  • 2023
  • In: Fuel. - : Elsevier BV. - 0016-2361. ; 331
  • Journal article (peer-reviewed)abstract
    • Methanol synthesis from CO2 hydrogenation has drawn global attention as catalytic CO2 hydrogenation is an attractive choice to mitigate CO2 emissions and lessen dependency on fossil resources. In the present study, we have synthesized ZrO2 and CeO2-supported In2O3 catalysts for methanol synthesis from CO2 hydrogenation and the catalytic performances of Inx/ZrO2, and Inx/CeO2 (x = 1 % and 13 %) were compared. Specifically, the effect of the ZrO2 and CeO2 supports on In2O3 catalyst during CO2 hydrogenation was explored. This study reveals that ZrO2 support increased the catalytic activity while the CeO2 support decreased although both supports have almost the same indium loading and surface area. Various characterizations like XRD, DRIFT, CO2-TPD, H2-TPR and XPS analysis of catalysts provided insight into changes that arise after mixing the two oxides and during the reaction as well as after the reaction. The stabilities of In2O3, In13/ZrO2, and In13/CeO2 were tested for up to 50 h and we found In13/ZrO2 was stable during this time-on-stream, while In13/CeO2 lost activity after 2 h of reaction. XPS results of spent catalysts showed that In(OH)3 was observed significantly over the spent In13/CeO2. OH groups were also verified by DRIFT experiments, however at low levels due to low CO2 conversion at atmospheric pressure. XRD analysis confirmed the sintering of CeO2 support during the reaction. Thus, the hydrophilic nature of CeO2, redox properties of CeO2 and sintering of CeO2 support in the presence of water, were the main reasons for the early deactivation of In13/CeO2. A regeneration study was carried out to regenerate the catalyst and the results showed that partial regeneration of the In13/CeO2 catalyst is possible by Ar flushing. We, therefore, suggest that the build-up of OHgroups deactivate the In13/CeO2 catalyst and some of these OH groups could be removed during flushing with inert gas, causing a partial regeneration. However, the decreased surface area is not reversible, and this results in a continuous decrease in the activity of the catalyst after repeated experiments, even if the catalyst is flushed with Ar between the experiments.
  •  
34.
  • Tarifa, Pilar, et al. (author)
  • Steam reforming of clean biogas over Rh and Ru open-cell metallic foam structured catalysts
  • 2022
  • In: Catalysis Today. - : Elsevier BV. - 0920-5861. ; 383, s. 74-83
  • Journal article (peer-reviewed)abstract
    • The valorisation of clean biogas (CH4/CO2 = 60/40 v/v) by steam reforming over metal open-cell foam-based structured catalysts was investigated. NiCrAl foams were coated by RuMgAl or RhMgAl hydrotalcite-type compounds through electrodeposition to obtain, after calcination, a thin and stable catalytic film of oxides. The active sites for the reforming reactions are highly dispersed Rh or Ru nanoparticles stabilized by a strong metal support interaction, large Ni particles segregated from the support during reduction and reaction, and Rh/Ni bimetallic particles formed by the interaction of the two formers. Rh-based catalysts show superior activity and stability with the time on stream than Ru catalysts, and a low carbon deposition, which is mainly ascribable to the presence of large Ni particles. In comparison to a pelletized catalyst, the structured catalysts are allowed to operate at high space velocities and low Steam to CH4 ratio, increasing the biogas valorisation and thus the productivity.
  •  
35.
  • Yao, Dawei, 1991, et al. (author)
  • Deciphering SO2 poisoning mechanisms for passive NOx adsorption: A kinetic modeling approach and development of a high-resistance catalyst
  • 2024
  • In: Chemical Engineering Journal. - 1385-8947. ; 487
  • Journal article (peer-reviewed)abstract
    • Passive NOx adsorption (PNA) is a promising technology aimed at reducing NOx emissions from vehicles during the cold start phase of the engine. This work investigated the SO2 poisoning mechanism of PNA through a combination of experimental research and kinetic modeling, leading to the development of a novel PNA sample with high resistance to SO2 poisoning. Pd/SSZ-13 samples were synthesized using different drying conditions, revealing that samples dried at room temperature showed lower degradation (10 %) compared to those dried at 80 °C (26 %). Investigation into the degradation revealed that ion-exchanged Pd sites with a hydroxyl group were more resistant to SO2 poisoning than other Pd sites. It is also found that SO2 aids in NOx storage on Pd sites, enhancing the PNA performance. A kinetic model was developed to describe the SO2 poisoning behavior and its influence on NOx storage. The model, which was verified under various conditions, effectively simulated the PNA behavior and SO2 poisoning of Pd/SSZ-13.
  •  
36.
  • Yao, Dawei, 1991, et al. (author)
  • Enhanced CO resistance of Pd/SSZ-13 for passive NOx adsorption
  • 2023
  • In: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 460
  • Journal article (peer-reviewed)abstract
    • Passive NOx adsorption (PNA) is a novel technology to control NOx emissions during cold start. However, the recent generation of PNA material, Pd/zeolite, suffers from major degradation under high CO concentrations. In this work, we developed a novel form of Pd/SSZ-13 by using a freeze-drying process after incipient wetness impregnation. This Pd/SSZ-13 showed a better stability than the sample synthesized by the common process. Several characterization measurements were conducted and it was found that the Pd sites on the freeze-dried sample were more resistant towards CO-induced agglomeration. By combing in-situ characterization and kinetic modeling, we found that the freeze-dried Pd/SSZ-13 had more ion-exchanged Pd sites, which provided greater resistance towards the CO-induced Ostwald ripening process, and consequently suppressed the sintering behavior under a high CO concentration. This material offers a potentially improved stability of PNAs under extremely high CO concentration pulses from incomplete diesel combustion during engine cold start.
  •  
37.
  • Yao, Dawei, 1991, et al. (author)
  • Insight into CO induced degradation mode of Pd/SSZ-13 in NOx adsorption and release: Experiment and modeling
  • 2022
  • In: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 439
  • Journal article (peer-reviewed)abstract
    • Passive NOx adsorption (PNA) on Pd zeolites is an important technique to remove NOx during the cold start of the engine. However, the stability of Pd zeolites under high concentrations of CO is still challenging in multiple cold starts of an engine. Herein, we illustrate the CO-induced degradation mechanism of Pd zeolite by combining experiments and kinetic models. Pd/SSZ-13 has been used in multicycle processes containing NOx adsorption at low temperature and temperature programmed desorption, which represents the PNA degradation in multiple cold start periods. A kinetic model was developed to describe the NOx storage and degradation behavior of Pd/SSZ-13. Both experimental and modelling observations suggested that two Pd sintering modes are occurring under high CO concentration (4000 ppm), namely Ostwald ripening and particle migration. Apart from the degradation behavior, this model is also adequate for describing multi-cycle NOx storage and release behavior under low CO concentration.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-37 of 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view