SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hobbie S. N.) "

Sökning: WFRF:(Hobbie S. N.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Becker, K., et al. (författare)
  • Antibacterial activity of apramycin at acidic pH warrants wide therapeutic window in the treatment of complicated urinary tract infections and acute pyelonephritis
  • 2021
  • Ingår i: EBioMedicine. - : Elsevier B.V.. - 2352-3964. ; 73
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). Methods: A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. Findings: EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. Interpretation: This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. Funding: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section. © 2021 The Author(s)
  •  
2.
  • Becker, K., et al. (författare)
  • Efficacy of EBL-1003 (apramycin) against Acinetobacter baumannii lung infections in mice
  • 2021
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier B.V.. - 1198-743X .- 1469-0691. ; 27:9, s. 1315-
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Novel therapeutics are urgently required for the treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) causing critical infections with high mortality. Here we assessed the therapeutic potential of the clinical-stage drug candidate EBL-1003 (crystalline free base of apramycin) in the treatment of CRAB lung infections. Methods: The genotypic and phenotypic susceptibility of CRAB clinical isolates to aminoglycosides and colistin was assessed by database mining and broth microdilution. The therapeutic potential was assessed by target attainment simulations on the basis of time–kill kinetics, a murine lung infection model, comparative pharmacokinetic analysis in plasma, epithelial lining fluid (ELF) and lung tissue, and pharmacokinetic/pharmacodynamic (PKPD) modelling. Results: Resistance gene annotations of 5451 CRAB genomes deposited in the National Database of Antibiotic Resistant Organisms (NDARO) suggested >99.9% of genotypic susceptibility to apramycin. Low susceptibility to standard-of-care aminoglycosides and high susceptibility to EBL-1003 were confirmed by antimicrobial susceptibility testing of 100 A. baumannii isolates. Time–kill experiments and a mouse lung infection model with the extremely drug-resistant CRAB strain AR Bank #0282 resulted in rapid 4-log CFU reduction both in vitro and in vivo. A single dose of 125 mg/kg EBL-1003 in CRAB-infected mice resulted in an AUC of 339 h × μg/mL in plasma and 299 h × μg/mL in ELF, suggesting a lung penetration of 88%. PKPD simulations suggested a previously predicted dose of 30 mg/kg in patients (creatinine clearance (CLCr) = 80 mL/min) to result in >99% probability of –2 log target attainment for MICs up to 16 μg/mL. Conclusions: This study provides proof of concept for the efficacy of EBL-1003 in the treatment of CRAB lung infections. Broad in vitro coverage, rapid killing, potent in vivo efficacy, and a high probability of target attainment render EBL-1003 a strong therapeutic candidate for a priority pathogen for which treatment options are very limited. © 2020 The Author(s)
  •  
3.
  • Juhas, Mario, et al. (författare)
  • In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii
  • 2019
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 74:4, s. 944-952
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Widespread antimicrobial resistance often limits the availability of therapeutic options to only a few last-resort drugs that are themselves challenged by emerging resistance and adverse side effects. Apramycin, an aminoglycoside antibiotic, has a unique chemical structure that evades almost all resistance mechanisms including the RNA methyltransferases frequently encountered in carbapenemase-producing clinical isolates. This study evaluates the in vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii, and provides a rationale for its superior antibacterial activity in the presence of aminoglycoside resistance determinants.Methods: A thorough antibacterial assessment of apramycin with 1232 clinical isolates from Europe, Asia, Africa and South America was performed by standard CLSI broth microdilution testing. WGS and susceptibility testing with an engineered panel of aminoglycoside resistance-conferring determinants were used to provide a mechanistic rationale for the breadth of apramycin activity.Results: MIC distributions and MIC90 values demonstrated broad antibacterial activity of apramycin against Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Morganella morganii, Citrobacter freundii, Providencia spp., Proteus mirabilis, Serratia marcescens and A. baumannii. Genotypic analysis revealed the variety of aminoglycoside-modifying enzymes and rRNA methyltransferases that rendered a remarkable proportion of clinical isolates resistant to standard-of-care aminoglycosides, but not to apramycin. Screening a panel of engineered strains each with a single well-defined resistance mechanism further demonstrated a lack of cross-resistance to gentamicin, amikacin, tobramycin and plazomicin.Conclusions: Its superior breadth of activity renders apramycin a promising drug candidate for the treatment of systemic Gram-negative infections that are resistant to treatment with other aminoglycoside antibiotics.
  •  
4.
  • Kashi, N. Niloufar, et al. (författare)
  • Nutrients Alter Methane Production and Oxidation in a Thawing Permafrost Mire
  • 2023
  • Ingår i: Ecosystems. - : Springer. - 1432-9840 .- 1435-0629. ; 26, s. 302-317
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost thaw releases nutrients and metals from previously frozen soils and these nutrients may affect important biogeochemical processes including methane (CH4) production and oxidation. Here we assessed how concentrations of nutrients, solutes, and metals varied across four plant communities undergoing permafrost thaw and if these geochemical characteristics affected rates of CH4 production and oxidation. We tested nutrient limitation in CH4 production and oxidation by experimentally adding nitrogen (N), phosphorus (P) and a permafrost leachate to peat across these four plant communities. The upper 20 cm of permafrost contained 715 ± 298 mg m−2 of extractable inorganic N and 20 ± 6 mg m−2 of resin-extractable phosphorus (Presin), for a N:P ratio of 36:1. These low amounts of Presin coincide with high acid-digestible aluminum (Al), iron (Fe), and P concentrations in the permafrost soil and suggest that P may accumulate via sorption and constrain easily available forms of P for plants and microbes. Permafrost leachate additions decreased potential CH4 production rates up to 80% and decreased CH4 oxidation rates by 66%, likely due to inhibitory effects of N in the permafrost. In contrast, organic and inorganic P additions increased CH4 oxidation rates up to 36% in the tall graminoid fen, a community where phosphate availability was low and CH4 production was high. Our results suggest that (1) inorganic N is available immediately from permafrost thaw, while (2) P availability is controlled by sorption properties, and (3) plant community, nutrient stoichiometry, and metal availability modulate how permafrost thaw affects CH4 production and oxidation.
  •  
5.
  • Ochoa-Hueso, Raúl, et al. (författare)
  • Microbial processing of plant remains is co-limited by multiple nutrients in global grasslands
  • 2020
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 26:8, s. 4572-4582
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy