SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoch J) "

Sökning: WFRF:(Hoch J)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
3.
  •  
4.
  •  
5.
  • Zaborowski, AM, et al. (författare)
  • Microsatellite instability in young patients with rectal cancer: molecular findings and treatment response
  • 2022
  • Ingår i: The British journal of surgery. - : Oxford University Press (OUP). - 1365-2168 .- 0007-1323. ; 109:3, s. 251-255
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study of 400 patients with early-onset rectal cancer, 12.5 per cent demonstrated microsatellite instability (MSI). MSI was associated with a reduced likelihood of nodal positivity, an increased rate of pathological complete response, and improved disease-specific survival.
  •  
6.
  • Alme, J., et al. (författare)
  • The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events
  • 2010
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 622:1, s. 316-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m(3) and is operated in a 0.5T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb-Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report. (C) 2010 CERN for the benefit of the ALICE collaboration. Published by Elsevier B.V. All rights reserved.
  •  
7.
  • Cortes, Andres J., et al. (författare)
  • Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea
  • 2014
  • Ingår i: Heredity. - : Springer Science and Business Media LLC. - 0018-067X .- 1365-2540. ; 113:3, s. 233-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early-and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current metapopulation dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change.
  •  
8.
  • Pustovalova, Y., et al. (författare)
  • NUScon: a community-driven platform for quantitative evaluation of nonuniform sampling in NMR
  • 2021
  • Ingår i: Magnetic Resonance. - : Copernicus GmbH. - 2699-0016. ; 2:2, s. 843-861
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the concepts of nonuniform sampling (NUS) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago (Bodenhausen and Ernst, 1981; Barna and Laue, 1987), it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., “resolution”) or peaks of weak intensity (i.e., “sensitivity”). Wider adoption of these methods is the result of improvements in computational performance, a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear, depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance. Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-based critical assessment of NUS challenge problems has been initiated, called the “Nonuniform Sampling Contest” (NUScon), with the objective of determining best practices for processing and analyzing NUS experiments. We address this objective by constructing challenges from NMR experiments that we inject with synthetic signals, and we process these challenges using workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses, and we present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a roadmap for continued community-driven development with the ultimate aim of providing best practices in this rapidly evolving field. The NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.
  •  
9.
  • Wheeler, J. A., et al. (författare)
  • Increased spring freezing vulnerability for alpine shrubs under early snowmelt
  • 2014
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 175:1, s. 219-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50 % of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species.
  •  
10.
  • Wheeler, J. A., et al. (författare)
  • With a little help from my friends : community facilitation increases performance in the dwarf shrub Salix herbacea
  • 2015
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 16:3, s. 202-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Shifts between positive and negative plant interactions along environmental stress gradients can affect alpine plant performance. We removed neighbours around Salix herbacea, a common arctic and alpine dwarf shrub, along elevational and snowmelt gradients on three mountains in Switzerland. The objectives of our study were to determine the effect of neighbours on phenological, morphological, and fitness traits ofS. herbacea, and to determine whether neighbour interactions shift from competition to facilitation along environmental stress gradients.Target plants without neighbours required less time for fruit production; however, they also were more likely to be damaged by caterpillar herbivory. Effects of neighbour removal changed along the environmental gradients: plants without neighbours had smaller leaves on earlier snowmelt sites, and increased fungal damage with increasing elevation. Without neighbour removal, damage generally led to reduced female flowering under later snowmelt conditions in the following summer.Our results indicate that the majority of neighbour interactions influencing S. herbacea are facilitative, particularly at stressful early snowmelt and high elevation sites. We suggest that neighbours moderate environmental conditions by protecting plants from temperature extremes, and reduce plant apparency to caterpillars. Neighbours also indirectly increase fitness by reducing damage. Facilitation by neighbours may become more important under climate change, as early snowmelt may increase stress.
  •  
11.
  • Ricke-Hoch, Melanie, et al. (författare)
  • Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglan-din-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.
  •  
12.
  • Scussolini, Paolo, et al. (författare)
  • Global River Discharge and Floods in the Warmer Climate of the Last Interglacial
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:18
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate hydrology during a past climate slightly warmer than the present: the last interglacial (LIG). With daily output of preindustrial and LIG simulations from eight new climate models we force hydrological model PCR-GLOBWB and in turn hydrodynamic model CaMa-Flood. Compared to preindustrial, annual mean LIG runoff, discharge, and 100-yr flood volume are considerably larger in the Northern Hemisphere, by 14%, 25%, and 82%, respectively. Anomalies are negative in the Southern Hemisphere. In some boreal regions, LIG runoff and discharge are lower despite higher precipitation, due to the higher temperatures and evaporation. LIG discharge is much higher for the Niger, Congo, Nile, Ganges, Irrawaddy, and Pearl and lower for the Mississippi, Saint Lawrence, Amazon, Parana, Orange, Zambesi, Danube, and Ob. Discharge is seasonally postponed in tropical rivers affected by monsoon changes. Results agree with published proxies on the sign of discharge anomaly in 15 of 23 sites where comparison is possible.
  •  
13.
  • Zhao, Zhihong, et al. (författare)
  • Impact of stress on solute transport in a fracture network : A comparison study
  • 2013
  • Ingår i: Journal of Rock Mechanics and Geotechnical Engineering. - : Chinese Academy of Sciences. - 1674-7755. ; 5:2, s. 110-123
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly motivated by the performance and safety assessments of underground radioactive waste repositories. Five research teams used different approaches to model stress/deformation, flow and transport processes, based on either discrete fracture network or equivalent continuum models. The simulation results derived by various teams generally demonstrated that rock stresses could significantly influence solute transport processes through stress-induced changes in fracture apertures and associated changes in permeability. Reasonably good agreement was achieved regarding advection and matrix diffusion given the same fracture network, while some observed discrepancies could be explained by different mechanical or transport modeling approaches. 
  •  
14.
  •  
15.
  • Hinkley, Sasha, et al. (författare)
  • The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1039
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles.
  •  
16.
  •  
17.
  •  
18.
  • Landhausser, S. M., et al. (författare)
  • Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates
  • 2018
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 38:12, s. 1764-1778
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-structural carbohydrates (NSCs), the stored products of photosynthesis, building blocks for growth and fuel for respiration, are central to plant metabolism, but their measurement is challenging. Differences in methods and procedures among laboratories can cause results to vary widely, limiting our ability to integrate and generalize patterns in plant carbon balance among studies. A recent assessment found that NSC concentrations measured for a common set of samples can vary by an order of magnitude, but sources for this variability were unclear. We measured a common set of nine plant material types, and two synthetic samples with known NSC concentrations, using a common protocol for sugar extraction and starch digestion, and three different sugar quantification methods (ion chromatography, enzyme, acid) in six laboratories. We also tested how sample handling, extraction solvent and centralizing parts of the procedure in one laboratory affected results. Non-structural carbohydrate concentrations measured for synthetic samples were within about 11.5% of known values for all three methods. However, differences among quantification methods were the largest source of variation in NSC measurements for natural plant samples because the three methods quantify different NSCs. The enzyme method quantified only glucose, fructose and sucrose, with ion chromatography we additionally quantified galactose, while the acid method quantified a large range of mono- and oligosaccharides. For some natural samples, sugars quantified with the acid method were two to five times higher than with other methods, demonstrating that trees allocate carbon to a range of sugar molecules. Sample handling had little effect on measurements, while ethanol sugar extraction improved accuracy over water extraction. Our results demonstrate that reasonable accuracy of NSC measurements can be achieved when different methods are used, as long as protocols are robust and standardized. Thus, we provide detailed protocols for the extraction, digestion and quantification of NSCs in plant samples, which should improve the comparability of NSC measurements among laboratories.
  •  
19.
  • Lüscher, Bernhard, et al. (författare)
  • ADP-ribosyltransferases, an update on function and nomenclature
  • 2022
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 289:23, s. 7399-7410
  • Tidskriftsartikel (refereegranskat)abstract
    • ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.
  •  
20.
  •  
21.
  •  
22.
  • Parker, P, et al. (författare)
  • Progress in integrated assessment and modelling
  • 2002
  • Ingår i: Environmental Modelling & Software. - 1364-8152. ; 17:3, s. 209-217
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental processes have been modelled for decades. However. the need for integrated assessment and modeling (IAM) has,town as the extent and severity of environmental problems in the 21st Century worsens. The scale of IAM is not restricted to the global level as in climate change models, but includes local and regional models of environmental problems. This paper discusses various definitions of IAM and identifies five different types of integration that Lire needed for the effective solution of environmental problems. The future is then depicted in the form of two brief scenarios: one optimistic and one pessimistic. The current state of IAM is then briefly reviewed. The issues of complexity and validation in IAM are recognised as more complex than in traditional disciplinary approaches. Communication is identified as a central issue both internally among team members and externally with decision-makers. stakeholders and other scientists. Finally it is concluded that the process of integrated assessment and modelling is considered as important as the product for any particular project. By learning to work together and recognise the contribution of all team members and participants, it is believed that we will have a strong scientific and social basis to address the environmental problems of the 21st Century.
  •  
23.
  • Salloum, Fadi N., et al. (författare)
  • Priorities in Cardio-Oncology Basic and Translational Science : GCOS 2023 Symposium Proceedings: JACC: CardioOncology State-of-the-Art Review
  • 2023
  • Ingår i: JACC: CardioOncology. - 2666-0873. ; 5:6, s. 715-731
  • Forskningsöversikt (refereegranskat)abstract
    • Despite improvements in cancer survival, cancer therapy–related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.
  •  
24.
  • Sedlacek, Janosch, et al. (författare)
  • The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing : Lessons from a Multi-Site Transplant Experiment
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is altering spring snowmelt patterns in alpine and arctic ecosystems, and these changes may alter plant phenology, growth and reproduction. To predict how alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity, its effects on growth and reproduction, and the degree to which plants experience a home-site advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to changing spring snowmelt time by reciprocally transplanting turfs of S. herbacea between early-exposure ridge and late-exposure snowbed microhabitats. After the transplant, we monitored phenological, morphological and fitness traits, as well as leaf damage, during two growing seasons. Salix herbacea leafed out earlier, but had a longer development time and produced smaller leaves on ridges relative to snowbeds. Longer phenological development times and smaller leaves were associated with reduced sexual reproduction on ridges. On snowbeds, larger leaves and intermediate development times were associated with increased clonal reproduction. Clonal and sexual reproduction showed no response to altered snowmelt time. We found no home-site advantage in terms of sexual and clonal reproduction. Leaf damage probability depended on snowmelt and thus exposure period, but had no short-term effect on fitness traits. We conclude that the studied populations of S. herbacea can respond to shifts in snowmelt by plastic changes in phenology and leaf size, while maintaining levels of clonal and sexual reproduction. The lack of a home-site advantage suggests that S. herbacea may not be adapted to different microhabitats. The studied populations are thus unlikely to react to climate change by rapid adaptation, but their responses will also not be constrained by small-scale local adaptation. In the short term, snowbed plants may persist due to high stem densities. However, in the long term, reduction in leaf size and flowering, a longer phenological development time and increased exposure to damage may decrease overall performance of S. herbacea under earlier snowmelt.
  •  
25.
  • Skvarla, John J., et al. (författare)
  • Unique tetrads of Epilobium luteum (Onagraceae Onagreae) pollen from Alaska
  • 2008
  • Ingår i: Brittonia. - : Springer Science and Business Media LLC. - 0007-196X .- 1938-436X. ; 60:4, s. 398-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Aperture morphology of tetrad pollen of Epilobium luteum (Onagraceae: Epilobieae) from three Alaskan collections is highly variable. The first collection appears to lack apertures altogether and is presumed to consist of immature pollen gains in a genus known to achieve mature size before the apertures become distinctly protruding. A second collection has tetrads with 3- and 4-apertured grains, the apertures in the latter are often irregularly spaced and not in apposition with the apertures of neighboring members. The third collection consists of the more typical 3-apertured members that characterize the majority of Epilobium pollen grains. In all of these collections individual pollen grains (monads) are interspersed among the tetrads. The variations in the number of apertures emphasize the importance of having a comprehensive understanding of the stage of development of the pollen (taxon) examined when describing pollen collections. In the first collection this would mean the recognition that in Onagraceae apertures occur in the later stages of microspore ontogeny. In the latter two collections a thorough background of the literature of the pollen morphology on this largest Onagraceae taxon is useful for the understanding of the significance of a range of aperture numbers on Epilobium pollen grains.
  •  
26.
  • Stewart, Alexander F., et al. (författare)
  • Chemistry Writing Instruction and Training: Implementing a Comprehensive Approach to Improving Student Communication Skills
  • 2016
  • Ingår i: Journal of Chemical Education. - : American Chemical Society (ACS). - 0021-9584 .- 1938-1328. ; 93:1, s. 86-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of science undergraduate students to capably communicate course content and their understanding of scientific phenomena through writing has long been considered a problem. Effective methods for improving student writing skills are often fragmented and undertaken on a course-by-course basis rather than as a coordinated approach. This paper describes the implementation of a departmental effort to enhance and evaluate chemistry student writing in several upper-year laboratory courses. The program involves introducing extensive writing focused aspects to course assignments and reports and has impacted over 600 students during a six-year period. Student feedback has been exceptionally positive from undergraduates as well as graduate students who previously participated in the initiative.
  •  
27.
  • Wheeler, Julia A., et al. (författare)
  • The snow and the willows : earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea
  • 2016
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 104:4, s. 1041-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Current changes in shrub abundance in alpine and arctic tundra ecosystems are primarily driven by climate change. However, while taller shrub communities are expanding, dwarf shrub communities show reductions under climate warming, and the mechanisms driving the latter (such as warming temperatures or accelerated spring snowmelt) may be complex. To determine and disentangle the response of a widespread arctic-alpine prostrate dwarf shrub to both climate warming and changes in snowmelt time, we investigated phenology, clonal and sexual reproduction, leaf size, wood tissue carbon balance and leaf damage in 480 patches of Salix herbacea, along its elevational and snowmelt microhabitat range over 3years in a space-for-time substitution. Earlier snowmelt was associated with longer phenological development periods, an increased likelihood of herbivory and fungal damage, lower stem density, smaller leaves and lower end-of-season wood reserve carbohydrates. Furthermore, while early snowmelt was associated with an increased proportion of flowering stems, the proportion of fruiting stems was not, as fruit set decreased significantly with earlier snowmelt. Warmer temperatures at lower elevations were associated with lower stem numbers and larger leaves.Synthesis. Our study indicates that phenology, fitness proxies and fungal/insect damage of the dwarf shrub S.herbacea are strongly influenced by snowmelt timing, and that earlier spring snowmelt reduced performance in S.herbacea. The likely mechanisms for many of the observed patterns are related to adverse temperature conditions in the early growing season. Reductions in clonal (stem number) and sexual reproduction (reduced fruit set) under earlier snowmelt, in addition to increasing damage probability, will likely lead to lower fitness and poorer performance, particularly in shrubs growing in early-exposure microhabitats. Further, we saw few concurrent benefits of higher temperatures for S.herbacea, particularly as warming was associated with lower clonal growth. As growing seasons become warmer and longer in arctic and alpine tundra ecosystems, early snowmelt is a critical mechanism reducing fitness and performance in a widespread dwarf shrub and may ultimately reduce dwarf shrub communities in tundra biomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy