SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hokkanen A. M.) "

Sökning: WFRF:(Hokkanen A. M.)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Duffy, J. M. N., et al. (författare)
  • Top 10 priorities for future infertility research: an international consensus development study
  • 2020
  • Ingår i: Human Reproduction. - : Oxford University Press (OUP). - 0268-1161 .- 1460-2350. ; 35:12, s. 2715-2724
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: Can the priorities for future research in infertility be identified? SUMMARY ANSWER: The top 10 research priorities for the four areas of male infertility, female and unexplained infertility, medically assisted reproduction and ethics, access and organization of care for people with fertility problems were identified. WHAT IS KNOWN ALREADY: Many fundamental questions regarding the prevention, management and consequences of infertility remain unanswered. This is a barrier to improving the care received by those people with fertility problems. STUDY DESIGN, SIZE, DURATION: Potential research questions were collated from an initial international survey, a systematic review of clinical practice guidelines and Cochrane systematic reviews. A rationalized list of confirmed research uncertainties was prioritized in an interim international survey. Prioritized research uncertainties were discussed during a consensus development meeting. Using a formal consensus development method, the modified nominal group technique, diverse stakeholders identified the top 10 research priorities for each of the categories male infertility, female and unexplained infertility, medically assisted reproduction and ethics, access and organization of care. PARTICIPANTS/MATERIALS, SETTING, METHODS: Healthcare professionals, people with fertility problems and others (healthcare funders, healthcare providers, healthcare regulators, research funding bodies and researchers) were brought together in an open and transparent process using formal consensus methods advocated by the James Lind Alliance. MAIN RESULTS AND THE ROLE OF CHANCE: The initial survey was completed by 388 participants from 40 countries, and 423 potential research questions were submitted. Fourteen clinical practice guidelines and 162 Cochrane systematic reviews identified a further 236 potential research questions. A rationalized list of 231 confirmed research uncertainties was entered into an interim prioritization survey completed by 317 respondents from 43 countries. The top 10 research priorities for each of the four categories male infertility, female and unexplained infertility (including age-related infertility, ovarian cysts, uterine cavity abnormalities and tubal factor infertility), medically assisted reproduction (including ovarian stimulation, IUI and IVF) and ethics, access and organization of care were identified during a consensus development meeting involving 41 participants from I I countries. These research priorities were diverse and seek answers to questions regarding prevention, treatment and the longer-term impact of infertility. They highlight the importance of pursuing research which has often been overlooked, including addressing the emotional and psychological impact of infertility, improving access to fertility treatment, particularly in lower resource settings and securing appropriate regulation. Addressing these priorities will require diverse research methodologies, including laboratory-based science, qualitative and quantitative research and population science. LIMITATIONS, REASONS FOR CAUTION: We used consensus development methods, which have inherent limitations, including the representativeness of the participant sample, methodological decisions informed by professional judgment and arbitrary consensus definitions. WIDER IMPLICATIONS OF THE FINDINGS: We anticipate that identified research priorities, developed to specifically highlight the most pressing clinical needs as perceived by healthcare professionals, people with fertility problems and others, will help research funding organizations and researchers to develop their future research agenda.
  •  
5.
  • Michelsen, B., et al. (författare)
  • Drug retention, inactive disease and response rates in 1860 patients with axial spondyloarthritis initiating secukinumab treatment: routine care data from 13 registries in the EuroSpA collaboration
  • 2020
  • Ingår i: RMD open. - : BMJ. - 2056-5933. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To explore 6-month and 12-month secukinumab effectiveness in patients with axial spondyloarthritis (axSpA) overall, as well as across (1) number of previous biologic/targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs), (2) time since diagnosis and (3) different European registries. METHODS: Real-life data from 13 European registries participating in the European Spondyloarthritis Research Collaboration Network were pooled. Kaplan-Meier with log-rank test, Cox regression, χ² and logistic regression analyses were performed to assess 6-month and 12-month secukinumab retention, inactive disease/low-disease-activity states (Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) <2/<4, Ankylosing Spondylitis Disease Activity Score (ASDAS) <1.3/<2.1) and response rates (BASDAI50, Assessment of Spondyloarthritis International Society (ASAS) 20/40, ASDAS clinically important improvement (ASDAS-CII) and ASDAS major improvement (ASDAS-MI)). RESULTS: We included 1860 patients initiating secukinumab as part of routine care. Overall 6-month/12-month secukinumab retention rates were 82%/72%, with significant (p<0.001) differences between the registries (6-month: 70-93%, 12-month: 53-86%) and across number of previous b/tsDMARDs (b/tsDMARD-naïve: 90%/73%, 1 prior b/tsDMARD: 83%/73%, ≥2 prior b/tsDMARDs: 78%/66%). Overall 6-month/12-month BASDAI<4 were observed in 51%/51%, ASDAS<1.3 in 9%/11%, BASDAI50 in 53%/47%, ASAS40 in 28%/22%, ASDAS-CII in 49%/46% and ASDAS-MI in 25%/26% of the patients. All rates differed significantly across number of previous b/tsDMARDs, were numerically higher for b/tsDMARD-naïve patients and varied significantly across registries. Overall, time since diagnosis was not associated with secukinumab effectiveness. CONCLUSIONS: In this study of 1860 patients from 13 European countries, we present the first comprehensive real-life data on effectiveness of secukinumab in patients with axSpA. Overall, secukinumab retention rates after 6 and 12months of treatment were high. Secukinumab effectiveness was consistently better for bionaïve patients, independent of time since diagnosis and differed across the European countries. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
  •  
6.
  • Duffy, J. M. N., et al. (författare)
  • Developing a core outcome set for future infertility research: an international consensus development study
  • 2020
  • Ingår i: Human Reproduction. - : Oxford University Press (OUP). - 0268-1161 .- 1460-2350. ; 35:12, s. 2725-2734
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: Can a core outcome set to standardize outcome selection, collection and reporting across future infertility research be developed? SUMMARY ANSWER: A minimum data set, known as a core outcome set, has been developed for randomized controlled trials (RCTs) and systematic reviews evaluating potential treatments for infertility. WHAT IS KNOWN ALREADY: Complex issues, including a failure to consider the perspectives of people with fertility problems when selecting outcomes, variations in outcome definitions and the selective reporting of outcomes on the basis of statistical analysis, make the results of infertility research difficult to interpret. STUDY DESIGN, SIZE, DURATION: A three-round Delphi survey (372 participants from 41 countries) and consensus development workshop (30 participants from 27 countries). PARTICIPANTS/MATERIALS, SETTING, METHODS: Healthcare professionals, researchers and people with fertility problems were brought together in an open and transparent process using formal consensus science methods. MAIN RESULTS AND THE ROLE OF CHANCE: The core outcome set consists of: viable intrauterine pregnancy confirmed by ultrasound (accounting for singleton, twin and higher multiple pregnancy); pregnancy loss (accounting for ectopic pregnancy, miscarriage, stillbirth and termination of pregnancy); live birth; gestational age at delivery; birthweight; neonatal mortality; and major congenital anomaly. Time to pregnancy leading to live birth should be reported when applicable. LIMITATIONS, REASONS FOR CAUTION: We used consensus development methods which have inherent limitations, including the representativeness of the participant sample, Delphi survey attrition and an arbitrary consensus threshold. WIDER IMPLICATIONS OF THE FINDINGS: Embedding the core outcome set within RCTs and systematic reviews should ensure the comprehensive selection, collection and reporting of core outcomes. Research funding bodies, the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) statement, and over 80 specialty journals, including the Cochrane Gynaecology and Fertility Group, Fertility and Sterility and Human Reproduction, have committed to implementing this core outcome set.
  •  
7.
  •  
8.
  •  
9.
  • Georgiadis, S, et al. (författare)
  • CAN SINGLE IMPUTATION TECHNIQUES FOR BASDAI COMPONENTS RELIABLY CALCULATE THE COMPOSITE SCORE IN AXIAL SPONDYLOARTHRITIS PATIENTS?
  • 2022
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 81, s. 212-213
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In axial spondyloarthritis (axSpA), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) is a key patient-reported outcome. However, one or more of its components may be missing when recorded in clinical practice.ObjectivesTo determine whether an individual patient’s BASDAI at a given timepoint can be reliably calculated with different single imputation techniques and to explore the impact of the number of missing components and/or differences between missingness of individual components.MethodsReal-life data from axSpA patients receiving tumour necrosis factor inhibitors (TNFi) from 13 countries in the European Spondyloarthritis (EuroSpA) Research Collaboration Network were utilized [1]. We studied missingness in BASDAI components based on simulations in a complete dataset, where we applied and expanded the approach of Ramiro et al. [2]. After introducing one or more missing components completely at random, BASDAI was calculated from the available components and with three different single imputation techniques: possible middle value (i.e. 50) of the component and mean and median of the available components. Differences between the observed (original) and calculated scores were assessed and correct classification of patients as having BASDAI<40 mm was additionally evaluated. For the setting with one missing component, differences arising between missing one of components 1-4 versus 5-6 were explored. Finally, the performance of imputations in relation to the values of the original score was investigated.ResultsA total of 19,894 axSpA patients with at least one complete BASDAI registration at any timepoint were included. 59,126 complete BASDAI registrations were utilized for the analyses with a mean BASDAI of 38.5 (standard deviation 25.9). Calculating BASDAI from the available components and imputing with mean or median showed similar levels of agreement (Table 1). When allowing one missing component, >90% had a difference of ≤6.9 mm between the original and calculated scores and >95% were correctly classified as BASDAI<40 (Table 1). However, separate analyses of components 1-4 and 5-6 as a function of the BASDAI score suggested that imputing any one of the first four BASDAI components resulted in a level of agreement <90% for specific BASDAI values while imputing one of the stiffness components 5-6 always reached a level of agreement >90% (Figure 1, upper panels). As expected, it was observed that regardless of the BASDAI component set to missing and the imputation technique used, correct classification of patients as BASDAI<40 was less than 95% for values around the cutoff (Figure 1, lower panels).Table 1.Level of agreement between the original and calculated BASDAI and correct classification for BASDAI<40 mmLevel of agreement with Dif≤6.9 mm* (%)Correct classification for BASDAI<40 mm** (%)1 missing componentAvailable93.996.9Value 5073.996.3Mean94.296.8Median93.196.82 missing componentsAvailable83.794.8Value 5040.792.8Mean83.594.8Median82.894.73 missing componentsAvailable71.992.6Value 5028.187.3Mean72.292.6Median69.792.2* The levels of agreement with a difference (Dif) of ≤6.9 mm between the original and calculated scores were based on the half of the smallest detectable change. Agreement of >90% was considered as acceptable. ** Correct classification of >95% was considered as acceptable.Figure 1.Level of agreement between the original and calculated BASDAI and correct classification for BASDAI<40 mm as a function of the original scoreConclusionBASDAI calculation with available components gave similar results to single imputation of missing components with mean or median. Only when missing one of BASDAI components 5 or 6, single imputation techniques can reliably calculate individual BASDAI scores. However, missing any single component value results in misclassification of patients with original BASDAI scores close to 40.References[1]Ørnbjerg et al. (2019). Ann Rheum Dis, 78(11), 1536-1544.[2]Ramiro et al. (2014). Rheumatology, 53(2), 374-376.AcknowledgementsNovartis Pharma AG and IQVIA for supporting the EuroSpA collaboration.Disclosure of InterestsStylianos Georgiadis Grant/research support from: Novartis, Myriam Riek Grant/research support from: Novartis, Christos Polysopoulos Grant/research support from: Novartis, Almut Scherer Grant/research support from: Novartis, Daniela Di Giuseppe: None declared, Gareth T. Jones Speakers bureau: Janssen, Grant/research support from: AbbVie, Pfizer, UCB, Amgen, GSK, Merete Lund Hetland Grant/research support from: Abbvie, Biogen, BMS, Celltrion, Eli Lilly, Janssen Biologics B.V, Lundbeck Fonden, MSD, Medac, Pfizer, Roche, Samsung Biopies, Sandoz, Novartis, Mikkel Østergaard Speakers bureau: Abbvie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Hospira, Janssen, Merck, Novartis, Novo, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, UCB, Consultant of: Abbvie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Hospira, Janssen, Merck, Novartis, Novo, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, UCB, Grant/research support from: Abbvie, BMS, Merck, Celgene, Novartis, Simon Horskjær Rasmussen Grant/research support from: Novartis, Johan K Wallman Consultant of: AbbVie, Amgen, Celgene, Eli Lilly, Novartis, Bente Glintborg Grant/research support from: Pfizer, Abbvie, BMS, Anne Gitte Loft Speakers bureau: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Consultant of: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Karel Pavelka Speakers bureau: Pfizer, MSD, BMS, UCB, Amgen, Egis, Roche, AbbVie, Consultant of: Pfizer, MSD, BMS, UCB, Amgen, Egis, Roche, AbbVie, Jakub Zavada Speakers bureau: Abbvie, Elli-Lilly, Sandoz, Novartis, Egis, UCB, Consultant of: Abbvie, Elli-Lilly, Sandoz, Novartis, Egis, UCB, Merih Birlik: None declared, Ayten Yazici Grant/research support from: Roche, Brigitte Michelsen Grant/research support from: Novartis, Eirik kristianslund: None declared, Adrian Ciurea Speakers bureau: AbbVie, Eli Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Consultant of: AbbVie, Eli Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Michael J. Nissen Speakers bureau: AbbVie, Eli Lilly, Janssens, Novartis, Pfizer, Consultant of: AbbVie, Eli Lilly, Janssens, Novartis, Pfizer, Ana Maria Rodrigues Speakers bureau: Abbvie, Amgen, Consultant of: Abbvie, Amgen, Grant/research support from: Novartis, Pfizer, Amgen, Maria Jose Santos Speakers bureau: Abbvie, AstraZeneca, Lilly, Novartis, Pfizer, Gary Macfarlane Grant/research support from: GSK, Anna-Mari Hokkanen Grant/research support from: MSD, Heikki Relas Speakers bureau: Abbvie, Celgene, Pfizer, UCB, Viatris, Consultant of: Abbvie, Celgene, Pfizer, UCB, Viatris, Catalin Codreanu Speakers bureau: AbbVie, Amgen, Boehringer Ingelheim, Ewopharma, Lilly, Novartis, Pfizer, Consultant of: AbbVie, Amgen, Boehringer Ingelheim, Ewopharma, Lilly, Novartis, Pfizer, Corina Mogosan: None declared, Ziga Rotar Speakers bureau: Abbvie, Novartis, MSD, Medis, Biogen, Eli Lilly, Pfizer, Sanofi, Lek, Janssen, Consultant of: Abbvie, Novartis, MSD, Medis, Biogen, Eli Lilly, Pfizer, Sanofi, Lek, Janssen, Matija Tomsic Speakers bureau: Abbvie, Amgen, Biogen, Eli Lilly, Janssen, Medis, MSD, Novartis, Pfizer, Sanofi, Sandoz-Lek, Consultant of: Abbvie, Amgen, Biogen, Eli Lilly, Janssen, Medis, MSD, Novartis, Pfizer, Sanofi, Sandoz-Lek, Björn Gudbjornsson Speakers bureau: Amgen, Novartis, Consultant of: Amgen, Novartis, Arni Jon Geirsson: None declared, Pasoon Hellamand Grant/research support from: Novartis, Marleen G.H. van de Sande Speakers bureau: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Consultant of: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Grant/research support from: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Isabel Castrejon: None declared, Manuel Pombo-Suarez Consultant of: Abbvie, MSD, Roche, Bruno Frediani: None declared, Florenzo Iannone Speakers bureau: Abbvie, Amgen, AstraZeneca, BMS, Galapagos, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Consultant of: Abbvie, Amgen, AstraZeneca, BMS, Galapagos, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Lykke Midtbøll Ørnbjerg Grant/research support from: Novartis
  •  
10.
  • Vuorinen, V., et al. (författare)
  • Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
  • 2020
  • Ingår i: Safety Science. - : Elsevier BV. - 0925-7535. ; 130
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets (d⩽20μm) allows lingering in the air for O(1h) so that they could be inhaled. Consistent with the previous literature, numerical evidence on the rapid drying process of even large droplets, up to sizes O(100μm), into droplet nuclei/aerosols is provided. Based on the literature and the public media sources, we provide evidence that the individuals, who have been tested positive on COVID-19, could have been exposed to aerosols/droplet nuclei by inhaling them in significant numbers e.g. O(100). By 3D scale-resolving computational fluid dynamics (CFD) simulations, we give various examples on the transport and dilution of aerosols (d⩽20μm) over distances O(10m) in generic environments. We study susceptible and infected individuals in generic public places by Monte-Carlo modelling. The developed model takes into account the locally varying aerosol concentration levels which the susceptible accumulate via inhalation. The introduced concept, ’exposure time’ to virus containing aerosols is proposed to complement the traditional ’safety distance’ thinking. We show that the exposure time to inhale O(100) aerosols could range from O(1s) to O(1min) or even to O(1h) depending on the situation. The Monte-Carlo simulations, along with the theory, provide clear quantitative insight to the exposure time in different public indoor environments.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Glintborg, B., et al. (författare)
  • One-Year Treatment Outcomes of Secukinumab Versus Tumor Necrosis Factor Inhibitors in Spondyloarthritis: Results From Five Nordic Biologic Registries Including More Than 10,000 Treatment Courses
  • 2022
  • Ingår i: Arthritis Care & Research. - : Wiley. - 2151-464X .- 2151-4658. ; 74:5, s. 748-758
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To describe baseline characteristics and to compare treatment effectiveness of secukinumab versus tumor necrosis factor inhibitors (TNFi) in patients with spondyloarthritis (SpA) using adalimumab as the main comparator. Methods This was an observational, prospective cohort study. Patients with SpA (clinical ankylosing spondylitis, nonradiographic axial SpA, or undifferentiated SpA) starting secukinumab or a TNFi during 2015-2018 were identified from 5 Nordic clinical rheumatology registries. Data on comorbidities and extraarticular manifestations (psoriasis, uveitis, and inflammatory bowel disease) were captured from national registries (data available in 94% of patients) and included in multivariable analyses. We assessed 1-year treatment retention (crude survival curves, adjusted hazard ratios [HRadj] for treatment discontinuation) and 6-month response rates (Ankylosing Spondylitis Disease Activity Score [ASDAS] score <2.1, Bath Ankylosing Spondylitis Disease Activity Index [BASDAI] <40 mm, crude/LUNDEX-adjusted, adjusted logistic regression analyses with odds ratios [ORs]) stratified by line of biologic treatment (first, second, and third plus). Results In total, 10,853 treatment courses (842 secukinumab and 10,011 TNFi, of which 1,977 were adalimumab) were included. The proportions of patients treated with secukinumab during the first, second, and third-plus lines of treatment were 1%, 6%, and 22%, respectively). Extraarticular manifestations varied across treatments, while other baseline characteristics were largely similar. Secukinumab had a 1-year retention comparable to adalimumab as a first or second line of treatment but poorer as a third-plus line of therapy (secukinumab 56% [95% confidence interval (95% CI) 51-61%] versus adalimumab 70% [95% CI 64-75%]; HRadj 1.43 [95% CI 1.12-1.81]). Across treatment lines, secukinumab had poorer estimates for 6-month response rates than adalimumab, statistically significantly only for the third-plus line (adjusted analyses: ASDAS score <2.1 OR 0.56 [95% CI 0.35-0.90]; BASDAI <40 mm OR 0.62 [95% CI 0.41-0.95]). Treatment outcomes varied across the 5 TNFi. Conclusion Secukinumab was mainly used in biologics-experienced patients with SpA. Secukinumab and adalimumab performed similarly in patients who had failed a first biologic, although with increasing prior biologic exposure, adalimumab was superior.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Ornbjerg, LM, et al. (författare)
  • SECULAR TRENDS IN BASELINE CHARACTERISTICS, TREATMENT RETENTION AND RESPONSE RATES IN 27189 BIO-NAIVE AXIAL SPONDYLOARTHRITIS PATIENTS INITIATING TNFI - RESULTS FROM THE EUROSPA COLLABORATION
  • 2021
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 80, s. 217-218
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Knowledge of changes over time in baseline characteristics and tumor necrosis factor inhibitor (TNFi) response in bio-naïve axial spondyloarthritis (axSpA) patients treated in routine care is limited.Objectives:To investigate secular trends in baseline characteristics and retention, remission and response rates in axSpA patients initiating a first TNFi.Methods:Prospectively collected data on bio-naïve axSpA patients starting TNFi in routine care from 15 European countries were pooled. According to year of TNFi initiation, three groups were defined a priori based on bDMARD availability: Group A (1999–2008), Group B (2009–2014) and Group C (2015–2018). Retention rates (Kaplan-Meier), crude and LUNDEX adjusted1 remission (Ankylosing Spondylitis Disease Activity Score (ASDAS) <1.3, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) <20) and response (ASDAS Major and Clinically Important Improvement (MI/CII), BASDAI 50) rates were assessed at 6, 12 and 24 months. No statistical comparisons were made.Results:In total, 27189 axSpA patients were included (5945, 11255 and 9989 in groups A, B and C).At baseline, patients in group A were older, had longer disease duration and a larger proportion of male and HLA-B27 positive patients compared to B and C, whereas disease activity was similar across groups.Retention rates at 6, 12 and 24 months were highest in group A (88%/81%/71%) but differed little between B (84%/74%/64%) and C (85%/76%/67%).In all groups, median ASDAS and BASDAI had decreased markedly at 6 months (Table 1). The ASDAS values at 12 and 24 months and BASDAI at 24 months were higher in group A compared with groups B and C. Similarly, crude remission and response rates were lowest in group A. After adjustments for drug retention (LUNDEX), remission and response rates showed less pronounced between-group differences regarding ASDAS measures and no relevant differences regarding BASDAI measures.Conclusion:Nowadays, axSpA patients initiating TNFi are younger with shorter disease duration and more frequently female and HLA-B27 negative than previously, while baseline disease activity is unchanged. Drug retention rates have decreased, whereas crude remission and response rates have increased. This may indicate expanded indication but also a stable disease activity threshold for TNFi initiation over time, an increased focus on targeting disease remission and more available treatment options.References:[1]Arthritis Rheum 2006; 54: 600-6.Table 1.Secular trends in baseline characteristics, treatment retention, remission and response rates in European axSpA patients initiating a 1st TNFiBaseline characteristicsGroup A(1999–2008)Group B(2009–2014)Group C(2015–2018)Age, years, median (IQR)57 (49–66)51 (42–60)46 (37–56)Male, %666057HLA-B27, %877772Years since diagnosis, median (IQR)5 (1–12)2 (0–8)2 (0–7)Smokers, %232425ASDAS, median (IQR)3.5 (2.8–4.1)3.4 (2.8–4.1)3.5 (2.8–4.1)BASDAI, median, (IQR)57 (42–71)59 (43–72)57 (41–71)TNFi drug, % (Adalimumab /Etanercept / Infliximab /Certolizumab / Golimumab)22 / 35 / 43 / 0 / 037 / 21 / 20 / 4 / 1827 / 28 / 24 / 8 / 13Follow up6 months12 months24 monthsGr AGr BGr CGr AGr BGr CGr AGr BGr CRetention rates, %, (95% CI)88 (88–89)84 (83–85)85 (84–86)81 (80–82)74 (74–75)76 (75–76)71 (70–72)64 (63–65)67 (66–68)ASDAS, median, (IQR)1.8 (1.2–2.8)1.9 (1.2–2.8)1.8 (1.2–2.6)1.9 (1.3–2.6)1.7 (1.2–2.5)1.6 (1.1–2.4)1.9 (1.4–2.6)1.7 (1.1–2.4)1.5 (1.1–2.2)ASDAS inactive disease, %, c/L28 / 2528 / 2430 / 2624 / 1932 / 2434 / 2623 / 1634 / 2039 / 23ASDAS CII, %, c/L57 / 5159 / 5063 / 5461 / 5063 / 4767 / 5159 / 4168 / 4074 / 45ASDAS MI, %, c/L31 / 2732 / 2737 / 3232 / 2637 / 2741 / 3130 / 2042 / 2546 / 28BASDAI, median, (IQR)23 (10–40)26 (11–48)24 (10–44)21 (10–38)23 (10–42)20 (8–39)22 (9–40)20 (8–39)16 (6–35)BASDAI remission, %, c/L44 / 4040 / 3443 / 3645 / 3645 / 3450 / 3844 / 3048 / 2956 / 34BASDAI 50 response, %, c/L53 / 4750 / 4253 / 4557 / 4656 / 4258 / 4457 / 3960 / 3563 / 38Gr, Group; c/L, crude/LUNDEX adjusted.Acknowledgements:Novartis Pharma AG and IQVIA for supporting the EuroSpA Research Collaboration Network.Disclosure of Interests:Lykke Midtbøll Ørnbjerg Grant/research support from: Novartis, Sara Nysom Christiansen Speakers bureau: BMS and GE, Grant/research support from: Novartis, Simon Horskjær Rasmussen: None declared, Anne Gitte Loft Speakers bureau: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, UCB, Consultant of: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, UCB, Grant/research support from: Novartis, Ulf Lindström: None declared, Jakub Zavada: None declared, Florenzo Iannone: None declared, Fatos Onen: None declared, Michael J. Nissen Speakers bureau: Novartis, Eli Lilly, Celgene, and Pfizer, Consultant of: Novartis, Eli Lilly, Celgene, and Pfizer, Brigitte Michelsen Consultant of: Novartis, Grant/research support from: Novartis, Maria Jose Santos Speakers bureau: AbbVie, Novartis, Pfizer, Gary Macfarlane Grant/research support from: GlaxoSmithKline, Dan Nordström Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, Roche, UCB, Manuel Pombo-Suarez: None declared, Catalin Codreanu Speakers bureau: AbbVie, Amgen, Egis, Novartis, Pfizer, UCB, Grant/research support from: AbbVie, Amgen, Egis, Novartis, Pfizer, UCB, Matija Tomsic Speakers bureau: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Consultant of: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Irene van der Horst-Bruinsma Speakers bureau: Abbvie, BMS, MSD, Novartis, Pfizer, Lilly, UCB, Björn Gudbjornsson Speakers bureau: Amgen and Novartis, Johan Askling: None declared, Bente Glintborg Grant/research support from: Pfizer, Biogen, AbbVie, Karel Pavelka Speakers bureau: AbbVie, Roche, MSD, UCB, Pfizer, Novartis, Egis, Gilead, Eli Lilly, Consultant of: AbbVie, Roche, MSD, UCB, Pfizer, Novartis, Egis, Gilead, Eli Lilly, Elisa Gremese: None declared, Nurullah Akkoc: None declared, Adrian Ciurea Speakers bureau: Abbvie, Eli-Lilly, MSD, Novartis, Pfizer, Eirik kristianslund: None declared, Anabela Barcelos: None declared, Gareth T. Jones Grant/research support from: Pfizer, AbbVie, UCB, Celgene, Amgen, GSK, Anna-Mari Hokkanen Grant/research support from: MSD, Carlos Sánchez-Piedra: None declared, Ruxandra Ionescu Speakers bureau: Abbvie, Amgen, Boehringer-Ingelheim Eli-Lilly,Novartis, Pfizer, Sandoz, UCB, Ziga Rotar Speakers bureau: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Consultant of: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Marleen G.H. van de Sande: None declared, Arni Jon Geirsson: None declared, Mikkel Østergaard Speakers bureau: AbbVie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Centocor, GSK, Hospira, Janssen, Merck, Mundipharma, Novartis, Novo, Orion, Pfizer, Regeneron, Schering-Plough, Roche, Takeda, UCB and Wyeth, Consultant of: AbbVie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Centocor, GSK, Hospira, Janssen, Merck, Mundipharma, Novartis, Novo, Orion, Pfizer, Regeneron, Schering-Plough, Roche, Takeda, UCB and Wyeth, Merete L. Hetland Speakers bureau: Abbvie, Biogen, BMS, Celltrion, Eli Lilly, Janssen Biologics B.V, Lundbeck Fonden, MSD, Pfizer, Roche, Samsung Biopies, Sandoz, Novartis.
  •  
20.
  • Glintborg, B., et al. (författare)
  • Is the risk of infection higher during treatment with secukinumab than with TNF inhibitors? An observational study from the Nordic countries
  • 2023
  • Ingår i: Rheumatology. - : Oxford University Press (OUP). - 1462-0324 .- 1462-0332. ; 62:2, s. 647-658
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives The positioning of secukinumab in the treatment of axial SpA (axSpA) and PsA is debated, partly due to a limited understanding of the comparative safety of the available treatments. We aimed to assess the risk of the key safety outcome infections during treatment with secukinumab and TNF inhibitors (TNFi). Methods Patients with SpA and PsA starting secukinumab or TNFi year 2015 through 2018 were identified in four Nordic rheumatology registers. The first hospitalized infection during the first year of treatment was identified through linkage to national registers. Incidence rates (IRs) with 95% CIs per 100 patient-years were calculated. Adjusted hazard ratios were estimated through Cox regression, with secukinumab as the reference. Several sensitivity analyses were performed to investigate confounding by indication. Results Among 7708 patients with SpA and 5760 patients with PsA, we identified 16 229 treatment courses of TNFi (53% bionaive) and 1948 with secukinumab (11% bionaive). For secukinumab, the first-year risk of hospitalized infection was 3.5% (IR 5.0; 3.9-6.3), compared with 1.7% (IR 2.3; 1.7-3.0) during 3201 courses with adalimumab, with the IRs for other TNFi lying in between these values. The adjusted HR for adalimumab, compared with secukinumab, was 0.58 (0.39-0.85). In sensitivity analyses, the difference from secukinumab was somewhat attenuated and in some analyses no longer statistically significant. Conclusion When used according to clinical practice in the Nordic countries, the observed first-year absolute risk of hospitalized infection was doubled for secukinumab compared with adalimumab. This excess risk seemed largely explained by confounding by indication.
  •  
21.
  •  
22.
  •  
23.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy