SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmberg Madeleine K. G.) "

Sökning: WFRF:(Holmberg Madeleine K. G.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roussos, E., et al. (författare)
  • Energetic electron observations of Rhea's magnetospheric interaction
  • 2012
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 221:1, s. 116-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Saturn's moon Rhea is thought to be a simple plasma absorber, however, energetic particle observations in its vicinity show a variety of unexpected and complex interaction features that do not conform with our current understanding about plasma absorbing interactions. Energetic electron data are especially interesting, as they contain a series of broad and narrow flux depletions on either side of the moon's wake. The association of these dropouts with absorption by dust and boulders orbiting within Rhea's Hill sphere was suggested but subsequently not confirmed, so in this study we review data from all four Cassini flybys of Rhea to date seeking evidence for alternative processes operating within the moon's interaction region. We focus on energetic electron observations, which we put in context with magnetometer, cold plasma density and energetic ion data. All flybys have unique features, but here we only focus on several structures that are consistently observed. The most interesting common feature is that of narrow dropouts in energetic electron fluxes, visible near the wake flanks. These are typically seen together with narrow flux enhancements inside the wake. A phase-space-density analysis for these structures from the first Rhea flyby (R1) shows that Liouville's theorem holds, suggesting that they may be forming due to rapid transport of energetic electrons from the magnetosphere to the wake, through narrow channels. A series of possibilities are considered to explain this transport process. We examined whether complex energetic electron drifts in the interaction region of a plasma absorbing moon (modeled through a hybrid simulation code) may allow such a transport. With the exception of several features (e.g. broadening of the central wake with increasing electron energy), most of the commonly observed interaction signatures in energetic electrons (including the narrow structures) were not reproduced. Additional dynamical processes, not simulated by the hybrid code, should be considered in order to explain the data. For the small scale features, the possibility that a flute (interchange) instability acts on the electrons is discussed. This instability is probably driven by strong gradients in the plasma pressure and the magnetic field magnitude: magnetometer observations show clearly signatures consistent with the (expected) plasma pressure loss due to ion absorption at Rhea. Another potential driver of the instability could have been gradients in the cold plasma density, which are, however, surprisingly absent from most crossings of Rhea's plasma wake. The lack of a density depletion in Rhea's wake suggests the presence of a local cold plasma source region. Hybrid plasma simulations show that this source cannot be the ionized component of Rhea's weak exosphere. It is probably related to accelerated photoelectrons from the moon's negatively charged surface, indicating that surface charging may play a very important role in shaping Rhea's magnetospheric interaction region. (C) 2012 Elsevier Inc. All rights reserved.
  •  
2.
  • Garnier, P., et al. (författare)
  • The detection of energetic electrons with the Cassini Langmuir probe at Saturn
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A10202-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini Langmuir probe, part of the Radio and Plasma Wave Science (RPWS) instrument, has provided a wealth of information about the cold and dense plasma in the Saturnian system. The analysis of the ion side current (current for negative potentials) measured by the probe from 2005 to 2008 reveals also a strong sensitivity to energetic electrons (250-450 eV). These electrons impact the surface of the probe, and generate a detectable current of secondary electrons. A broad secondary electrons current region is inferred from the observations in the dipole L Shell range of similar to 6-10, with a peak full width at half maximum (FWHM) at L = 6.4-9.4 (near the Dione and Rhea magnetic dipole L Shell values). This magnetospheric flux tube region, which displays a large day/night asymmetry, is related to the similar structure in the energetic electron fluxes as the one measured by the onboard Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS). It corresponds spatially to both the outer electron radiation belt observed by the Magnetosphere Imaging Instrument (MIMI) at high energies and to the low-energy peak which has been observed since the Voyager era. Finally, a case study suggests that the mapping of the current measured by the Langmuir probe for negative potentials can allow to identify the plasmapause-like boundary recently identified at Saturn, and thus potentially identify the separation between the closed and open magnetic field lines regions.
  •  
3.
  • Holmberg, Madeleine K. G., et al. (författare)
  • Ion densities and velocities in the inner plasma torus of Saturn
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 73:1, s. 151-160
  • Tidskriftsartikel (refereegranskat)abstract
    • We present plasma data from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe (LP), mapping the ion density and velocity of Saturn's inner plasma torus. Data from 129 orbits, recorded during the period from the 1st of February 2005 to the 27th of June 2010, are used to map the extension of the inner plasma torus. The dominant part of the plasma torus is shown to be located in between 2.5 and 8 Saturn radii (1 RS=60,268 km) from the planet, with a north-southward extension of ±2RS. The plasma disk ion density shows a broad maximum in between the orbits of Enceladus and Tethys. Ion density values vary between 20 and 125 cm-3 at the location of the density maximum, indicating considerable dynamics of the plasma disk. The equatorial density structure, |z|<0.5RS, shows a slower decrease away from the planet than towards. The outward decrease, from 5 R S, is well described by the relation neq=2.2×10 4(1/R)3.63. The plume of the moon Enceladus is clearly visible as an ion density maximum of 105 cm-3, only present at the south side of the ring plane. A less prominent density peak, of 115 cm-3, is also detected at the orbit of Tethys, at ∼4.9 RS. No density peaks are recorded at the orbits of the moons Mimas, Dione, and Rhea. The presented ion velocity vi,θ shows a clear general trend in the region between 3 and 7 RS, described by vi, θ=1.5R2-8.7R+39. The average vi,θ starts to deviate from corotation at around 3 RS, reaching ∼68% of corotation close to 5 RS.
  •  
4.
  • Morooka, Michiko W., et al. (författare)
  • Dusty plasma in the vicinity of Enceladus
  • 2011
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 116
  • Tidskriftsartikel (refereegranskat)abstract
    • We present in situ Cassini Radio Plasma Wave Science observations in the vicinity of Enceladus and in the E ring of Saturn that indicate the presence of dusty plasma. The four flybys of Enceladus in 2008 revealed the following cold plasma characteristics: (1) there is a large plasma density (both ions and electrons) within the Enceladus plume region, (2) no plasma wake effect behind Enceladus was detected, (3) electron densities are generally much lower than the ion densities in the E ring (n(e)/n(i) < 0.5) as well as in the plume (n(e)/n(i) < 0.01), and (4) the average bulk ion drift speed is significantly less than the corotation speed and is instead close to the Keplerian speed. These signatures result from half or more of the electrons being attached to dust grains and by the interaction between the surrounding cold plasma and the predominantly negatively charged submicrometer-sized dust grains. The dust and plasma properties estimated from the observations clearly show that the dust-plasma interaction is collective. This strong dust-plasma coupling appears not only in the Enceladus plume but also in the Enceladus torus, typically from about 20 R(E) (similar to 5000 km) north and about 60 R(E) (similar to 15,000 km) south of Enceladus. We also suggest that the dust-plasma interaction in the E ring is the cause of the planetary spin-modulated dynamics of Saturn's magnetosphere at large.
  •  
5.
  • Sakai, S., et al. (författare)
  • Dust-plasma interaction through magnetosphere-ionosphere coupling in Saturn's plasma disk
  • 2013
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 75:1, s. 11-16
  • Forskningsöversikt (refereegranskat)abstract
    • The ion bulk speeds in the equatorial region of Saturn's inner magnetosphere, according to data from the Langmuir Probe (LP) on board the Cassini spacecraft, are about 60% of the ideal co-rotation speed; the ion speeds are between the co-rotation and Keplerian speeds (Holmberg et al.; Ion densities and velocities in the inner plasma torus of Saturn, Planetary and Space Science). These findings suggest that sub-micrometer negatively charged E ring dust contributes to the plasma dynamics in the plasma disk. We calculated the ion speeds by using a multi-species fluid model, taking into account dust interactions to investigate the effects of ion-dust coulomb collision, mass loading, as well as taking into account magnetosphere-ionosphere coupling to investigate the effect of the magnetospheric electric field. The results show that the ion speeds can be significantly reduced by the electric fields generated by the collisions between ions and dusts when the dust density is high and the thickness of dust distribution is large. We also show that the ion speeds from our model are consistent with the LP observations when the maximum density of dust is larger than ∼105 m-3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy