SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmes Elaine) "

Sökning: WFRF:(Holmes Elaine)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brindle, Joanne T, et al. (författare)
  • Rapid and Nonivasive Diagnosis of the Presence and Severity of Coronary Heart Disease Using 1H-NMR-Based Metabonomics
  • 2002
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 8, s. 1439-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Although a wide range of risk factors for coronary heart disease have been identified from population studies, these measures, singly or in combination, are insufficiently powerful to provide a reliable, noninvasive diagnosis of the presence of coronary heart disease. Here we show that pattern-recognition techniques applied to proton nuclear magnetic resonance (1H-NMR) spectra of human serum can correctly diagnose not only the presence, but also the severity, of coronary heart disease. Application of supervised partial least squares-discriminant analysis to orthogonal signal-corrected data sets allows >90% of subjects with stenosis of all three major coronary vessels to be distinguished from subjects with angiographically normal coronary arteries, with a specificity of >90%. Our studies show for the first time a technique capable of providing an accurate, noninvasive and rapid diagnosis of coronary heart disease that can be used clinically, either in population screening or to allow effective targeting of treatments such as statins.
  •  
2.
  • Craddock, Nick, et al. (författare)
  • Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 713-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed,19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated similar to 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
  •  
3.
  • Jonsson, Pär, et al. (författare)
  • Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets
  • 2005
  • Ingår i: The Analyst. - : Royal Society of Chemistry (RSC). - 0003-2654 .- 1364-5528. ; 130:5, s. 701-707
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • LC/MS is an analytical technique that, due to its high sensitivity, has become increasingly popular for the generation of metabolic signatures in biological samples and for the building of metabolic data bases. However, to be able to create robust and interpretable ( transparent) multivariate models for the comparison of many samples, the data must fulfil certain specific criteria: (i) that each sample is characterized by the same number of variables, (ii) that each of these variables is represented across all observations, and (iii) that a variable in one sample has the same biological meaning or represents the same metabolite in all other samples. In addition, the obtained models must have the ability to make predictions of, e. g. related and independent samples characterized accordingly to the model samples. This method involves the construction of a representative data set, including automatic peak detection, alignment, setting of retention time windows, summing in the chromatographic dimension and data compression by means of alternating regression, where the relevant metabolic variation is retained for further modelling using multivariate analysis. This approach has the advantage of allowing the comparison of large numbers of samples based on their LC/MS metabolic profiles, but also of creating a means for the interpretation of the investigated biological system. This includes finding relevant systematic patterns among samples, identifying influential variables, verifying the findings in the raw data, and finally using the models for predictions. The presented strategy was here applied to a population study using urine samples from two cohorts, Shanxi (People's Republic of China) and Honolulu ( USA). The results showed that the evaluation of the extracted information data using partial least square discriminant analysis (PLS-DA) provided a robust, predictive and transparent model for the metabolic differences between the two populations. The presented findings suggest that this is a general approach for data handling, analysis, and evaluation of large metabolic LC/MS data sets.
  •  
4.
  • Nicholson, George, et al. (författare)
  • A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection
  • 2011
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:9, s. e1002270-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11<p<2.8×10−23). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects.
  •  
5.
  • Adamo, Christin S., et al. (författare)
  • EMILIN1 deficiency causes arterial tortuosity with osteopenia and connects impaired elastogenesis with defective collagen fibrillogenesis
  • 2022
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 109:12, s. 2230-2252
  • Tidskriftsartikel (refereegranskat)abstract
    • EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.
  •  
6.
  • Antti, Henrik, et al. (författare)
  • Statistical experimental design and partial least squares regression analysis of biofluid metabonomic NMR and clinical chemistry data for screening of adverse drug effects
  • 2004
  • Ingår i: Chemometrics and Intelligent Laboratory Systems. - : Elsevier BV. - 0169-7439. ; 73:1, s. 139-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabonomic analysis is increasingly recognised as a powerful approach for delineating the integrated metabolic changes in biofluids and tissues due to toxicity, disease processes or genetic modification in whole animal systems. When dealing with complex biological data sets, as generated within metabonomics, as well as related fields such as genomics and proteomics, reliability and significance of identified biomarkers associated with specific states related to toxicity or disease are crucial in order to gain detailed and relevant interpretations of the metabolic fluxes in the studied systems. Since various physiological factors, such as diet, state of health, age, diurnal cycles, stress, genetic drift, and strain differences, affect the metabolic composition of biological matrices, it is of great importance to create statistically reliable decision tools for distinguishing between physiological and pathological responses in animal models. In the screening for new biomarkers or patterns of pathological dysfunction, methods providing statistically valid measures of effect-related changes will become increasingly important as the data within areas such as genomics, proteomics and metabonomics continues to grow in size and complexity. 1H NMR spectroscopy and mass spectrometry are the principal analytical platforms used to derive the data and, because extensively large data sets are required, as much consideration has to be given to optimum design of experiments (DoE) as for subsequent data analysis. Thus, statistical experimental design combined with partial least squares (PLS) regression is proposed as an efficient approach for undertaking metabonomic studies and for analysis of the results. The method was applied to data from a liver toxicology study in the rat using hydrazine as a model toxin. 1D projections of 2D J-resolved (J-RES) 1H NMR spectra and the corresponding clinical chemistry parameters of blood serum samples from control and dosed rats (30 and 90 mg/kg) collected at 48 and 168 h post dose were analysed. Confidence intervals for the PLS regression coefficients were used to create a statistical means for screening of biomarkers in the two combined data blocks (NMR and clinical chemistry data). PLS analysis was also used to reveal the correlation pattern between the two blocks of data as well as the within the two blocks according to dose, time and the interaction dose×time.
  •  
7.
  • Azmi, Jahanara, et al. (författare)
  • Metabolic trajectory characterisation of xenobiotic-induced hepatotoxic lesions using statistical batch processing of NMR data : Nicholson Jeremy K., Holmes Elaine
  • 2002
  • Ingår i: Analyst. - : Royal Society of Chemistry (RSC). ; 127, s. 271-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Multivariate statistical batch processing (BP) analysis of 1H NMR urine spectra was employed to establish time-dependent metabolic variations in animals treated with the model hepatotoxin, -naphthylisothiocyanate (ANIT). ANIT (100 mg kg-1) was administered orally to rats (n = 5) and urine samples were collected from dosed and matching control rats at time-points up to 168 h post-dose. Urine samples were measured via1H NMR spectroscopy and partial least squares (PLS) based batch processing analysis was used to interpret the spectral data, treating each rat as an individual batch comprising a series of timed urine samples. A model defining the mean urine profile over the 7 day study period was established, together with model confidence limits (±3 standard deviation), for the control group. Samples obtained from ANIT treated animals were evaluated using the control model. Time-dependent deviations from the control model were evident in all ANIT treated animals consisting of glycosuria, bile aciduria, an initial decrease in taurine levels followed by taurinuria and a reduction of tricarboxylic acid cycle intermediate excretion. BP provided an efficient means of visualising the biochemical response to ANIT in terms of both inter-animal variation and net variation in metabolite excretion profiles. BP also allowed multivariate statistical limits for normality to be established and provided a template for defining the sequence of time-dependent metabolic consequences of toxicity in NMR based metabonomic studies.
  •  
8.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
9.
  • Blaise, Benjamin J., et al. (författare)
  • Statistical analysis in metabolic phenotyping
  • 2021
  • Ingår i: Nature Protocols. - : Nature Publishing Group. - 1754-2189 .- 1750-2799. ; 16:9, s. 4299-4326
  • Forskningsöversikt (refereegranskat)abstract
    • Metabolic phenotyping is an important tool in translational biomedical research. The advanced analytical technologies commonly used for phenotyping, including mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, generate complex data requiring tailored statistical analysis methods. Detailed protocols have been published for data acquisition by liquid NMR, solid-state NMR, ultra-performance liquid chromatography (LC-)MS and gas chromatography (GC-)MS on biofluids or tissues and their preprocessing. Here we propose an efficient protocol (guidelines and software) for statistical analysis of metabolic data generated by these methods. Code for all steps is provided, and no prior coding skill is necessary. We offer efficient solutions for the different steps required within the complete phenotyping data analytics workflow: scaling, normalization, outlier detection, multivariate analysis to explore and model study-related effects, selection of candidate biomarkers, validation, multiple testing correction and performance evaluation of statistical models. We also provide a statistical power calculation algorithm and safeguards to ensure robust and meaningful experimental designs that deliver reliable results. We exemplify the protocol with a two-group classification study and data from an epidemiological cohort; however, the protocol can be easily modified to cover a wider range of experimental designs or incorporate different modeling approaches. This protocol describes a minimal set of analyses needed to rigorously investigate typical datasets encountered in metabolic phenotyping.
  •  
10.
  • Bollard, Mary E, et al. (författare)
  • Comparative metabonomics of differential hydrazine toxicity in the rat and mouse
  • 2005
  • Ingår i: Toxicology and Applied Pharmacology. - : Elsevier BV. - 0041-008X. ; 204:2, s. 135-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Interspecies variation between rats and mice has been studied for hydrazine toxicity using a novel metabonomics approach. Hydrazine hydrochloride was administered to male Sprague–Dawley rats (30 mg/kg, n = 10 and 90 mg/kg, n = 10) and male B6C3F mice (100 mg/kg, n = 8 and 250 mg/kg, n = 8) by oral gavage. In each species, the high dose was selected to produce the major histopathologic effect, hepatocellular lipid accumulation. Urine samples were collected at sequential time points up to 168 h post dose and analyzed by 1H NMR spectroscopy. The metabolites of hydrazine, namely diacetyl hydrazine and 1,4,5,6-tetrahydro-6-oxo-3-pyridazine carboxylic acid (THOPC), were detected in both the rat and mouse urine samples. Monoacetyl hydrazine was detected only in urine samples from the rat and its absence in the urine of the mouse was attributed to a higher activity of N-acetyl transferases in the mouse compared with the rat. Differential metabolic effects observed between the two species included elevated urinary β-alanine, 3-d-hydroxybutyrate, citrulline, N-acetylcitrulline, and reduced trimethylamine-N-oxide excretion unique to the rat. Metabolic principal component (PC) trajectories highlighted the greater degree of toxic response in the rat. A data scaling method, scaled to maximum aligned and reduced trajectories (SMART) analysis, was used to remove the differences between the metabolic starting positions of the rat and mouse and varying magnitudes of effect, to facilitate comparison of the response geometries between the rat and mouse. Mice followed “biphasic” open PC trajectories, with incomplete recovery 7 days after dosing, whereas rats followed closed “hairpin” time profiles, indicating functional reversibility. The greater magnitude of metabolic effects observed in the rat was supported by the more pronounced effect on liver pathology in the rat when compared with the mouse.
  •  
11.
  • Bylesjö, Max, et al. (författare)
  • K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
  • 2008
  • Ingår i: BMC Bioinformatics. - : BioMed Central. - 1471-2105. ; 9, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Kernel-based classification and regression methods have been successfully applied to modelling a wide variety of biological data. The Kernel-based Orthogonal Projections to Latent Structures (K-OPLS) method offers unique properties facilitating separate modelling of predictive variation and structured noise in the feature space. While providing prediction results similar to other kernel-based methods, K-OPLS features enhanced interpretational capabilities; allowing detection of unanticipated systematic variation in the data such as instrumental drift, batch variability or unexpected biological variation.Results: We demonstrate an implementation of the K-OPLS algorithm for MATLAB and R, licensed under the GNU GPL and available at http://www.sourceforge.net/projects/kopls/. The package includes essential functionality and documentation for model evaluation (using cross-validation), training and prediction of future samples. Incorporated is also a set of diagnostic tools and plot functions to simplify the visualisation of data, e.g. for detecting trends or for identification of outlying samples. The utility of the software package is demonstrated by means of a metabolic profiling data set from a biological study of hybrid aspen.Conclusion: The properties of the K-OPLS method are well suited for analysis of biological data, which in conjunction with the availability of the outlined open-source package provides a comprehensive solution for kernel-based analysis in bioinformatics applications.
  •  
12.
  • Bylesjö, Max, et al. (författare)
  • OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification
  • 2006
  • Ingår i: Journal of Chemometrics. - : Wiley. - 0886-9383 .- 1099-128X. ; 20:8-10, s. 341-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The characteristics of the OPLS method have been investigated for the purpose of discriminant analysis (OPLS-DA). We demonstrate how class-orthogonal variation can be exploited to augment classification performance in cases where the individual classes exhibit divergence in within-class variation, in analogy with soft independent modelling of class analogy (SIMCA) classification. The prediction results will be largely equivalent to traditional supervised classification using PLS-DA if no such variation is present in the classes. A discriminatory strategy is thus outlined, combining the strengths of PLS-DA and SIMCA classification within the framework of the OPLS-DA method. Furthermore, resampling methods have been employed to generate distributions of predicted classification results and subsequently assess classification belief. This enables utilisation of the class-orthogonal variation in a proper statistical context. The proposed decision rule is compared to common decision rules and is shown to produce comparable or less class-biased classification results.
  •  
13.
  • Cloarec, Olivier, et al. (författare)
  • Evaluation of the Orthogonal Projection on Latent Structure Model Limitations Caused by Chemical Shift Variability and Improved Visualization of Biomarker Changes in 1H NMR Spectroscopic Metabonomic Studies
  • 2005
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 77:2, s. 517-26
  • Tidskriftsartikel (refereegranskat)abstract
    • In general, applications of metabonomics using biofluid NMR spectroscopic analysis for probing abnormal biochemical profiles in disease or due to toxicity have all relied on the use of chemometric techniques for sample classification. However, the well-known variability of some chemical shifts in 1H NMR spectra of biofluids due to environmental differences such as pH variation, when coupled with the large number of variables in such spectra, has led to the situation where it is necessary to reduce the size of the spectra or to attempt to align the shifting peaks, to get more robust and interpretable chemometric models. Here, a new approach that avoids this problem is demonstrated and shows that, moreover, inclusion of variable peak position data can be beneficial and can lead to useful biochemical information. The interpretation of chemometric models using combined back-scaled loading plots and variable weights demonstrates that this peak position variation can be handled successfully and also often provides additional information on the physicochemical variations in metabonomic data sets.
  •  
14.
  • Cloarec, Olivier, et al. (författare)
  • Statistical Total Correlation Spectroscopy: An Exploratory Approach for Latent Biomarker Identification from Metabolic 1H NMR Data Sets
  • 2005
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 77:5, s. 1282-89
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach.
  •  
15.
  • Eriksen, Rebeca, et al. (författare)
  • Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk : An IMI DIRECT study
  • 2020
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 58
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. Methods: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n = 403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n = 458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariable regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. Findings: A higher Tpred score was associated with healthier diets high in wholegrain (β=3.36 g, 95% CI 0.31, 6.40 and β=2.82 g, 95% CI 0.06, 5.57) and lower energy intake (β=-75.53 kcal, 95% CI -144.71, -2.35 and β=-122.51 kcal, 95% CI -186.56, -38.46), and saturated fat (β=-0.92 g, 95% CI -1.56, -0.28 and β=–0.98 g, 95% CI -1.53, -0.42 g), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and favourable lipid profiles HDL-cholesterol (β=0.07 mmol/L, 95% CI 0.03, 0.1), (β=0.08 mmol/L, 95% CI 0.04, 0.1), and triglycerides (β=-0.1 mmol/L, 95% CI -0.2, -0.03), (β=-0.2 mmol/L, 95% CI -0.3, -0.09), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat (β=-0.74%, 95% CI -0.67, -0.81), and lower fasting concentrations of HbA1c (β=-0.9 mmol/mol, 95% CI -1.5, -0.1), glucose (β=-0.2 mmol/L, 95% CI -0.4, -0.05) and insulin (β=-11.0 pmol/mol, 95% CI -19.5, -2.6). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (β=-0.2 mmol/L, 95% CI -0.3, -0.01) and insulin (β=-9.2 pmol/mol, 95% CI -17.9, -0.4) concentrations in cohort 2. Interpretation: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health. Funding: This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115,317 (DIRECT), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013) and EFPIA companies.
  •  
16.
  • Eriksson, Lennart, et al. (författare)
  • Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm)
  • 2004
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 380:3, s. 419-29
  • Tidskriftsartikel (refereegranskat)abstract
    • This article describes the applicability of multivariate projection techniques, such as principal-component analysis (PCA) and partial least-squares (PLS) projections to latent structures, to the large-volume high-density data structures obtained within genomics, proteomics, and metabonomics. PCA and PLS, and their extensions, derive their usefulness from their ability to analyze data with many, noisy, collinear, and even incomplete variables in both X and Y. Three examples are used as illustrations: the first example is a genomics data set and involves modeling of microarray data of cell cycle-regulated genes in the microorganism Saccharomyces cerevisiae. The second example contains NMR-metabonomics data, measured on urine samples of male rats treated with either of the drugs chloroquine or amiodarone. The third and last data set describes sequence-function classification studies in a set of G-protein-coupled receptors using hierarchical PCA.
  •  
17.
  • Fox, Elaine, et al. (författare)
  • Travellers' Tales in Cognitive Bias Modification Research : A Commentary on the Special Issue
  • 2014
  • Ingår i: Cognitive Therapy and Research. - : SPRINGER/PLENUM PUBLISHERS. - 0147-5916 .- 1573-2819. ; 38:2, s. 239-247
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This brief commentary reflects on the current Special Issue on "Cognitive Bias Modification Techniques: Current findings and future challenges". We consider past perspectives, present findings and future applications of "cognitive bias modification" (CBM) training procedures. In an interview with Marcella L. Woud, Bundy Mackintosh responds with her thoughts as an experienced 'traveler', given her pioneering work at the early stages of CBM research. Elaine Fox provides an overview of developments since the last special issue on CBM that she helped to co-edit in 2009, and Emily A. Holmes reflects on what might need to be done in order to translate the results of CBM research into therapeutic practice. All three conclude that, much as we might wish for a CBM 'tardis' time travel machine, there is much basic and translational science work to be done before the fruits of CBM research will be seen in the clinic. Systematic, thorough, and collaborative efforts will be needed, and we urge researchers to pay more attention to developing appropriate methodologies to enable the 'transfer' of training to clinical symptoms. Given the colossal clinical need to innovate and develop the content and delivery of mental health treatments, CBM research needs to keep travelling slowly, surely, and further. It is important to note that given low intensity of delivery, even studies with small effect sizes may be beneficial at a public health level. We should keep going, but retain strong roots in experimental psychopathology to maintain the quality and understanding of how cognitive factors are central to mental health and to the effectiveness of therapeutic interventions.
  •  
18.
  • Grafton, Ben, et al. (författare)
  • Confusing procedures with process when appraising the impact of cognitive bias modification on emotional vulnerability
  • 2017
  • Ingår i: British Journal of Psychiatry. - : CAMBRIDGE UNIV PRESS. - 0007-1250 .- 1472-1465. ; 211:5, s. 266-271
  • Tidskriftsartikel (refereegranskat)abstract
    • If meta-analysis is to provide valuable answers, then it is critical to ensure clarify about the questions being asked. Here, we distinguish two important questions concerning cognitive bias modification research that are not differentiated in the meta-analysis recently published by Cristea et al (2015) in this journal: (1) do the varying procedures that investigators have employed with the intention of modifying cognitive bias, on average, significantly impact emotional vulnerability?; and (2) does the process of successfully modifying cognitive bias, on average, significantly impact emotional vulnerability? We reanalyse the data from Cristea et al to address this latter question. Our new analyses demonstrate that successfully modifying cognitive bias does significantly alter emotional vulnerability. We revisit Cristea et al's conclusions in light of these findings.
  •  
19.
  •  
20.
  • Loo, Ruey Leng, et al. (författare)
  • Strategy for improved characterization of human metabolic phenotypes using a COmbined Multi-block Principal components Analysis with Statistical Spectroscopy (COMPASS)
  • 2020
  • Ingår i: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1367-4811 .- 1460-2059. ; 36:21, s. 5229-5236
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Large-scale population omics data can provide insight into associations between gene-environment interactions and disease. However, existing dimension reduction modelling techniques are often inefficient for extracting detailed information from these complex datasets.Results: Here, we present an interactive software pipeline for exploratory analyses of population-based nuclear magnetic resonance spectral data using a COmbined Multi-block Principal components Analysis with Statistical Spectroscopy (COMPASS) within the R-library hastaLaVista framework. Principal component analysis models are generated for a sequential series of spectral regions (blocks) to provide more granular detail defining sub-populations within the dataset. Molecular identification of key differentiating signals is subsequently achieved by implementing Statistical TOtal Correlation SpectroscopY on the full spectral data to define feature patterns. Finally, the distributions of cross-correlation of the reference patterns across the spectral dataset are used to provide population statistics for identifying underlying features arising from drug intake, latent diseases and diet. The COMPASS method thus provides an efficient semi-automated approach for screening population datasets.
  •  
21.
  • Margulies, Elliott H, et al. (författare)
  • Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome
  • 2007
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 17:6, s. 760-774
  • Tidskriftsartikel (refereegranskat)abstract
    • A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization.
  •  
22.
  • Rantalainen, Mattias, et al. (författare)
  • Kernel-based orthogonal projections to latent structures (K-OPLS)
  • 2007
  • Ingår i: Journal of Chemometrics. - : Wiley. - 0886-9383 .- 1099-128X. ; 21:7-9, s. 379-385
  • Tidskriftsartikel (refereegranskat)abstract
    • The orthogonal projections to latent structures (OPLS) method has been successfully applied in various chemical and biological systems for modeling and interpretation of linear relationships between a descriptor matrix and response matrix. A kernel-based reformulation of the original OPLS algorithm is presented where the kernel Gram matrix is utilized as a replacement for the descriptor matrix. This enables usage of the kernel trick to efficiently transform the data into a higher-dimensional feature space where predictive and response-orthogonal components are calculated. This strategy has the capacity to improve predictive performance considerably in situations where strong non-linear relationships exist between descriptor and response variables while retaining the OPLS model framework. We put particular focus on describing properties of the rearranged algorithm in relation to the original OPLS algorithm. Four separate problems, two simulated and two real spectroscopic data sets, are employed to illustrate how the algorithm enables separate modeling of predictive and response-orthogonal variation in the feature space. This separation can be highly beneficial for model interpretation purposes while providing a flexible framework for supervised regression.
  •  
23.
  • Rantalainen, Mattias, et al. (författare)
  • Piecewise multivariate modelling of sequential metabolic profiling data
  • 2008
  • Ingår i: BMC Bioinformatics. - : BioMed Central. - 1471-2105. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints.Results: A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted.Conclusion: The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.
  •  
24.
  • Rantalainen, Mattias, et al. (författare)
  • Piecewise multivariate modelling of sequential metabolic profiling data
  • 2008
  • Ingår i: BMC Bioinformatics. - : EMBO. - 1471-2105. ; 9, s. 105-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. Results: A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. Conclusion: The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.
  •  
25.
  • Rantalainen, Mattias, et al. (författare)
  • Statistically Integrated Metabonomic-Proteomic Studies on a Human Prostate Cancer Xenograft Model in Mice
  • 2006
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 10, s. 2642-55
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel statistically integrated proteometabonomic method has been developed and applied to a human tumor xenograft mouse model of prostate cancer. Parallel 2D-DIGE proteomic and 1H NMR metabolic profile data were collected on blood plasma from mice implanted with a prostate cancer (PC-3) xenograft and from matched control animals. To interpret the xenograft-induced differences in plasma profiles, multivariate statistical algorithms including orthogonal projection to latent structure (OPLS) were applied to generate models characterizing the disease profile. Two approaches to integrating metabonomic data matrices are presented based on OPLS algorithms to provide a framework for generating models relating to the specific and common sources of variation in the metabolite concentrations and protein abundances that can be directly related to the disease model. Multiple correlations between metabolites and proteins were found, including associations between serotransferrin precursor and both tyrosine and 3-D-hydroxybutyrate. Additionally, a correlation between decreased concentration of tyrosine and increased presence of gelsolin was also observed. This approach can provide enhanced recovery of combination candidate biomarkers across multi-omic platforms, thus, enhancing understanding of in vivo model systems studied by multiple omic technologies
  •  
26.
  • Trygg, Johan, et al. (författare)
  • Chemometrics in metabonomics
  • 2007
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 6:2, s. 469-479
  • Forskningsöversikt (refereegranskat)abstract
    • We provide an overview of how the underlying philosophy of chemometrics is integrated throughout metabonomic studies. Four steps are demonstrated: (1) definition of the aim, (2) selection of objects, (3) sample preparation and characterization, and (4) evaluation of the collected data. This includes the tools applied for linear modeling, for example, Statistical Experimental Design (SED), Principal Component Analysis (PCA), Partial least-squares (PLS), Orthogonal-PLS (OPLS), and dynamic extensions thereof. This is illustrated by examples from the literature.
  •  
27.
  • Vorkas, Panagiotis A., et al. (författare)
  • Perturbations in fatty acid metabolism and apoptosis are manifested in calcific coronary artery disease : An exploratory lipidomic study
  • 2015
  • Ingår i: International Journal of Cardiology. - : Elsevier. - 0167-5273 .- 1874-1754. ; 197, s. 192-199
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Controversy exists concerning the beneficial or harmful effects of the presence of ectopic calcification in the coronary arteries. Additionally, further elucidation of the exact pathophysiological mechanism is needed. In this study, we sought to identify metabolic markers of vascular calcification that could assist in understanding the disease, monitoring its progress and generating hypotheses describing its pathophysiology. Methods: Untargeted lipid profiling and complementary modeling strategies were employed to compare serum samples from patients with different levels of calcific coronary artery disease (CCAD) based on their calcium score (CS). Subsequently, patients were divided into three groups: no calcification (NC; CS = 0; n = 26), mild calcification (MC; CS: 1-250; n = 27) and severe (SC; CS > 250; n = 17). Results: Phosphatidylcholine levels were found to be significantly altered in the disease states (p = 0.001-0.04). Specifically, 18-carbon fatty acyl chain (FAC) phosphatidylcholines were detected in lower levels in the SC group, while 20:4 FAC lipid species were detected in higher concentrations. A statistical trend was observed with phosphatidylcholine lipids in the MC group, showing the same tendency as with the SC group. We also observed several sphingomyelin signals present at lower intensities in SC when compared with NC or MC groups (p = 0.000001-0.01). Conclusions: This is the first lipid profiling study reported in CCAD. Our data demonstrate dysregulations of phosphatidylcholine lipid species, which suggest perturbations in fatty acid elongation/desaturation. The altered levels of the 18-carbon and 20:4 FAC lipids may be indicative of disturbed inflammation homeostasis. The marked sphingomyelin dysregulation in SC is consistent with profound apoptosis as a potential mechanism of CCAD. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (1)
populärvet., debatt m.m. (1)
Författare/redaktör
Holmes, Elaine (21)
Nicholson, Jeremy K (15)
Trygg, Johan (12)
Cloarec, Olivier (7)
Antti, Henrik (7)
Lindon, John C (6)
visa fler...
Lundstedt, Torbjörn (4)
Johansson, Erik (3)
McCarthy, Mark I (3)
Bylesjö, Max (3)
Ebbels, Timothy M D (3)
Keun, Hector C (3)
Beckonert, Olaf (3)
Nikolaev, Sergey (2)
Lindblad-Toh, Kersti ... (2)
Antonarakis, Stylian ... (2)
Holmes, Emily A. (2)
Pachter, Lior (2)
Wheeler, David A (2)
Haussler, David (2)
Lander, Eric S. (2)
Whelan, Simon (2)
Walker, Mark (2)
Adamski, Jerzy (2)
Gnerre, Sante (2)
Jaffe, David B. (2)
Mardis, Elaine R (2)
Wilson, Richard K (2)
Wold, Svante (2)
Bollard, Mary E (2)
Paten, Benedict (2)
Muzny, Donna M (2)
Gibbs, Richard A (2)
Graves, Tina (2)
Birney, Ewan (2)
Donnelly, Peter (2)
Taylor, James (2)
Margulies, Elliott H ... (2)
Carter, Nigel P. (2)
Keefe, Damian (2)
Thomas, Daryl J. (2)
Brown, James B. (2)
Bickel, Peter (2)
Green, Eric D. (2)
Siepel, Adam (2)
Cooper, Gregory M. (2)
Asimenos, George (2)
Dewey, Colin N. (2)
Hou, Minmei (2)
Montoya-Burgos, Juan ... (2)
visa färre...
Lärosäte
Umeå universitet (18)
Uppsala universitet (8)
Kungliga Tekniska Högskolan (2)
Lunds universitet (2)
Karolinska Institutet (1)
Språk
Engelska (26)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy